Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:29:42.214Z Has data issue: false hasContentIssue false

Selective Epitaxial Growth of Strained Silicon-Germanium Films in Tubular Hot-Wall Low Pressure Chemical Vapor Deposition Systems

Published online by Cambridge University Press:  03 September 2012

I -M. Leet
Affiliation:
Schools of Chemical Engineering, Purdue University, Indiana 47907
W. -C. Wang
Affiliation:
Electrical Engineering, Purdue University, Indiana 47907
M. T. K. Koh
Affiliation:
Materials Engineering, Purdue University, Indiana 47907
J.P. Denton
Affiliation:
Electrical Engineering, Purdue University, Indiana 47907
E. P. Kvam
Affiliation:
Materials Engineering, Purdue University, Indiana 47907
G. W. Neudeck
Affiliation:
Electrical Engineering, Purdue University, Indiana 47907
C. G. Takoudis
Affiliation:
Schools of Chemical Engineering, Purdue University, Indiana 47907
Get access

Abstract

Selective epitaxial growth (SEG) of silicon-germanium (SiGe) films on patterned-oxide silicon substrates, using a tubular hot-wall low pressure chemical vapor deposition (LPCVD) system, is demonstrated in this study. This conventional system is proposed as a low cost alternative for SiGe epitaxial growth. Three process improvements needed to achieve quality growth are discussed. First, the hydrogen bake process is modified to eliminate Ge-outgassing. Secondly, a Si SEG buffer layer is deposited prior to SiGe SEG. Finally, a small flow of dichlorosilane is introduced during the temperature ramp-down period prior to SiGe SEG. The growth results are discussed in terms of growth selectivity, thickness uniformity, growth rate, defect density, SiGe film composition, and electrical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Schubert, P. J., Glenn, J. L. Jr., Friedrich, J. A. Claasen, W.A., Zing, R. D., Denton, J. P. and Neudeck, G. W. J. Electronic Materials,19, 1111(1990).Google Scholar
2 Noble, D. B., Hoyt, J. L., King, C. A., Gibbons, J. F. Kamins, T. I., and Scott, M. P., Appl. Phys. Lett., 56, 51, (1990).Google Scholar
3 Wang, W. -C., Denton, J. P., Neudeck, G. W., Lee, I. -M., Takoudis, C. G., Koh, M. T. K. and Kvam, E. P., accepted for publication in J. Vac. Sci. Tech. B (1996).Google Scholar
4 Lee, I. -M., Takoudis, C. G., Wang, W. -C., Denton, J. P., Neudeck, G. W., Koh, M. T. K., and Kvam, E. P., submitted to J. Electrochem. Soc.(1996).Google Scholar
5 Lee, I. -M., Jansons, A., and Takoudis, C. G., submitted to J. Vac. Sci. Tech. B (1996).Google Scholar
6 Gaynor, W.H.,Research Thesis, School of Chemical Engineering, Purdue University (1989).Google Scholar
7 Gaynor, W. H., Takoudis, C. G., Neudeck, G. W., J. Vac. Sci. Tech. A, in press(1996).Google Scholar
8 Lou, J. -C. , Galewski, C., and Oldham, W. G., Appl. Phys. Lett., 58, 59 (1991).Google Scholar
9 Kvam, E. P. and Namavar, F., Appl. Phys. Lett., 58, 21 (1991).Google Scholar
10 Fitzgerald, E. A., Watson, G. P., Proano, R. E., Ast, D. G., Kirchner, P. D., Pettit, G. D., and Woodall, J. M., J. Appl. Phys., 65, 2220 (1989).Google Scholar