No CrossRef data available.
Article contents
Scanning Tunneling Optical Resonance Microscopy (STORM)
Published online by Cambridge University Press: 11 February 2011
Abstract
The ability to determine the in-situ optoelectronic behavior of semiconductor materials has become especially important as the size of device architectures is reduced and the development of complex microsystems has increased. Scanning Tunneling Optical Resonance Microscopy or STORM has the ability to interrogate the optical bandgap as a function of position within a semiconductor microstructure. This technique uses a tunable solid-state Ti sapphire laser whose output is “chopped” using a spatial light modulator and is coupled by a fiber optic to a scanning tunneling microscope in order to illuminate the tip-sample junction. The photoenhanced portion of the tunneling current is spectroscopically measured using a lock-in technique. The capabilities of this technique were verified using semiconductor microstructure calibration standards that were grown by organometallic vapor phase epitaxy (OMVPE) at the NASA Glenn Research Center. Bandgaps characterized by STORM measurements were found to be in good agreement with the bulk values determined by transmission spectroscopy, photoluminescence, and with the theoretical values that were based on x-ray diffraction results.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2003