Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:26:44.516Z Has data issue: false hasContentIssue false

Relaxation of Electron Beam-Induced Metastable Defects in a-Si:II

Published online by Cambridge University Press:  01 January 1993

M. Grimbergen
Affiliation:
Stanford University, Department of Materials Science and Engineering Stanford, CA
R. Mcconville
Affiliation:
Raychem Corporation,Corporate Technology,Menlo Park, CA
D. Redfield
Affiliation:
Stanford University, Department of Materials Science and Engineering Stanford, CA
R.H. Bube
Affiliation:
Stanford University, Department of Materials Science and Engineering Stanford, CA
Get access

Abstract

Relaxation of the metastable defect density in undoped amorphous silicon is observed after keV electron irradiation. The time constant for relaxation has an activation energy close to 1 eV, similar to that for light-induced defects. Relaxation appears to follow two or more stages. A large initial density relaxes rapidly, followed by slower relaxation more characteristic of light-induced defects. Separation of these components allows for a better comparison of e-beam and light-induced saturation defect density.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Staebler, D.L. and Wronski, C.R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
[2] Smith, Z E. and Wagner, S., Phys. Rev. B32. 510 (1985).Google Scholar
[3] Street, R., Biegelson, D., and Stuke, J., Phil. Mag. B40, 212 (1979).Google Scholar
[4] Schneider, U. and Schroeder, B. in Amorphous Silicon and Related Materials, Fritsche, H., ed., (World Scientific, Singapore, 1989) pp 687720.Google Scholar
[5] Scholz, A. and Schroeder, B., J. Non-Cryst. Sol. 137&138. 259 (1991).Google Scholar
[6] Grinibergen, M., Lopez-Otero, A., Fahrenbruch, A., Benatar, L., Redfield, D., Bube, R., and McConville, R., MRS Proc. 258, 443 (1992).Google Scholar
[7] Vanecek, M., Kocka, A., Stichlik, J., Kosisek, Z., Stika, O. and Triska, A., Sol. Energy Matls. 8, 411 (1983).Google Scholar
[8] Street, R., Solar Cells 24, 211 (1988).Google Scholar
[9] Redfield, D., MRS Proc. 258, 341 (1992).Google Scholar
[10] Kakalios, J., Street, R.A., and Jackson, W.B., Phys. Rev. Lett. 59, 1037 (1987).Google Scholar
[11] Xu, X., Sasaki, H., Monmoto, A., Kumeda, M., and Shimizu, T., Phys. Rev B41, 10049 (1989).Google Scholar
[12] Street, R.A. and Winer, K., Phys. Rev B 40, 6236 (1989).Google Scholar
[13] Jackson, W.B. and Kakalios, J., Phys. Rev B 37, 1020 (1988).Google Scholar
[14] Bube, R.H., Benatar, L., Grimbergen, M., and Redfield, D., J. Appl. Phys. 72, 5766 (1992).Google Scholar
[15] Grimbergen, M., Benatar, L., Fahrenbruch, A., Lopez-Otero, A., Redfield, D., and Bube, R., AIP Conf. Proc. 234. 138 (1991).Google Scholar
[16] Dersch, H., Schweitzer, L., and Stuke, J., Phys. Rev. B 28, 4678 (1983).Google Scholar