Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:54:49.216Z Has data issue: false hasContentIssue false

Relationship Between Structure and Luminescent Properties of Epitaxial Grown Y2O3:Eu Thin Films on LaAlO3 Substrates

Published online by Cambridge University Press:  10 February 2011

H-J. Gao
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030
G. Duscher
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030
X.D. Fan
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030
S.J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030
D. Kumar
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611-6400
K.G. Cho
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611-6400
P.H. Holloway
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611-6400
R.K. Singh
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611-6400
Get access

Abstract

Cathodoluminescence images of individual pores have been obtained at nanometer resolution in europium-activated yttrium oxide (Y2O3:Eu) (001) thin films, epitaxially grown on LaA1O3 (001) substrates. Comparison with Z-contrast images, obtained simultaneously, directly show the “dead layer” to be about 5 nm thick. This “dead layer” is the origin of the reduced emission efficiency with increasing pore size. Pore sizes were varied by using different substrate temperatures and laser pulse repetition rates during film growth. These films are epitaxially aligned with the substrate, which is always Al terminated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Manchanda, L. and Gurvitch, M., IEEE Electronic Devices Lett. 9, 180(1988).Google Scholar
2.Kalkur, T.S., Kwor, Y.R., and Araujo, C.A. Paz de, Thin Solid Films 170, 185(1989).Google Scholar
3.Duclos, S.J., Greskovich, C.D., and O‘Clair, C.R., MRS Symp. Proc. 348, 503(1994).Google Scholar
4.Blasse, G. and Grabmaier, B.C., Lum. Mater. Springer, Berlin(1994)Google Scholar
5.Choi, S.C., Cho, M.H., Whangbo, S.W., Whang, C.N., Kang, S.B., Lee, S.I., and Lee, M.Y., Appl. Phys. Lett. 71, 903(1997).Google Scholar
6.Rao, R.P., Solid State Communications 99, 439(1996)Google Scholar
7.Onisawa, K.-I., Fuyama, M., Tamura, K., Taguchi, K., Nakayama, T., and Ono, Y.A., J. Appl. Phys. 68, 719(1990).Google Scholar
8.Jankowski, A.F., Schrawyer, L.R., and Hayes, J.P., J. Vac. Sci. Technol. A11, 1548(1993)Google Scholar
9.Cranton, W.M., Spink, D.M., Stevens, R., and Thomas, C.B., Thin Solid Films 226, 156(1993).Google Scholar
10.Jones, S.L., Kumar, D., Singh, R.K., and Holloway, P.H., Appl. Phys. Lett. 71, 404(1997).Google Scholar
11.Cho, K.G., Kumar, D., Lee, D.J., Jones, S.L., Holloway, P.H., and Singh, R.K., Appl. Phys. Lett. 71, 3335(1997).Google Scholar
12.Cho, K.G., Kumar, D., Jones, S.L., Lee, D.J., Holloway, P.H., and Singh, R.K., J. Electrochem. Soc. 145, 3456(1998).Google Scholar
13.Gao, H-J., Kumar, D., Cho, K.G., Holloway, P.H., Singh, R.K., Fan, X.D., Yan, Y., and Pennycook, S.J., Appl. Phys. Lett. 75, 2223(1999).Google Scholar
14.Pennycook, S. J., ‘STEM: Z-contrast’, in Handbook of Microscopy, ed. By Amelinckx, S., Dyck, D. van, Landuyt, J. van, and Tendeloo, G. van, VCH Publishers, Weinheim, Germany, pp. 595 (1997)Google Scholar
15.Fitz-Gerald, J., Pennycook, S.J., Gao, H., Krishnamoorthy, V., Marcinka, J., Glenn, W., Singh, R., Mat. Res. Soc. Proc. Spring 1998, 502, (1998)Google Scholar
16.Fitz-Gerald, J., Trottier, T., Singh, R.K., Holloway, P.H., Appl. Phys. Lett. 72, 1838(1998).Google Scholar
17.Kumar, D., Fitz-Gerald, J., Singh, R.K., Appl. Phys. Lett. 72, 1451(1998).Google Scholar
18.Gao, H-J., et al., Appl Phys. Lett. (to be published).Google Scholar
19.Browning, N.D., Chisholm, M. F., Pennycook, S.J., Nature 366, 143(1993).Google Scholar
20.Daams, J.L., Villars, P., and Vanvucht, J.H.N., Atlas of Crystal Structure types for Intermetallic Phases, P.6706. ASM International, Materials Park. OH(1994)Google Scholar
21.Paten, M.G. and Maslen, E.N., Acta. Crystallogr. 19, 307(1965).Google Scholar
22.O'Conner, B.H., Valentine, T.M., Acta Crystallogr. B 25, 2140(1969).Google Scholar
23.Faucher, M., Pannetier, J., Acta Crystallogr.B 36, 3209(1980).Google Scholar
24.Schaik, W.v. and Blasse, G., Chem. Mater. 4, 410(1992).Google Scholar
25.Jollet, F., Noguera, C., Thromat, N., Gautier, M., and Duraud, J.P., Phys. Rev. B 42, 7587(1990).Google Scholar
26.Machlin, E.S., Materials Science in Microelectronics, Giro Press, Croton-on-Hudson (1995)Google Scholar