Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-10-06T09:31:59.419Z Has data issue: false hasContentIssue false

The Relationship Between Microstructure and Contact Resistance in NiAuGe/ZrB2/Au Ohmic Contacts to GaAs.

Published online by Cambridge University Press:  25 February 2011

M. P. Grimshaw
Affiliation:
Imperial College Of Science, Technology And Medicine, Department Of Materials, Prince Consort Road, London SW7 2BP, U.K. now at The Cavendish Laboratory, Cambridge University, Cambridge CB3 OHE, U.K.
A. E. Staton-Bevan
Affiliation:
Imperial College Of Science, Technology And Medicine, Department Of Materials, Prince Consort Road, London SW7 2BP, U.K.
J. Herniman
Affiliation:
British Telecom Research Laboratories, Martlesham Heath, Ipswich IP5 7RE, U.K.
D. A. Allan
Affiliation:
British Telecom Research Laboratories, Martlesham Heath, Ipswich IP5 7RE, U.K.
Get access

Abstract

The microstructure and contact resistance of NiAuGe contacts to n-type GaAs were determined as a function of initial contact composition. The contact microstructures were found to contain varying amounts of of α, α’ and β (or Au7Ga2) Au-Ga, epitaxial Ge, NiGe and NiGeAs phases. A previously unidentified NiAsx (Zr,B) phase was also observed. The contact resistance was found to vary between 0.22-0.38±0.03Ωmm. Comparison of the microstructural and contact resistance data revealed that the ohmic formation models based on (i) the formation of a recrystallised n+ GaAs layer and (ii) the presence of a graded Ge/GaAs heterojunction were not applicable to this contact system.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Goronkin, H., Tehrani, S., Remmel, T., Fejes, P.L. and Johnson, K.J., I.E.E.E. Trans. Electron. Dev. 36 (2), 281 (1989)Google Scholar
[2] Barnard, W.O., Strydom, H.J., Kruger, M.M. and Schildhauer, C. and Lacquet, B.M., Nucl. Inst. & Meth. in Phys. Res. B35, 238 (1988).CrossRefGoogle Scholar
[3] Ball, R.K., Thin Solid Films 176, 55 (1989).CrossRefGoogle Scholar
[4] Vidimari, F., Electron. Letts. 15, 674 (1979).CrossRefGoogle Scholar
[5] Bruce, R.A. and Piercy, G.R., Sol. State Electron. 30, 729 (1987).CrossRefGoogle Scholar
[6] Heiblum, M., Nathan, M.I., Chang, C.A., Sol. State Electron. 25, 185 (1982).CrossRefGoogle Scholar
[7] Nathan, M.I. and Heiblum, M., Sol. State Electron. 25, 1063 (1982).CrossRefGoogle Scholar
[8] Wittmer, M., Pretorius, R., Mayer, J.W. and Nicolet, M.A., Sol. State Electron. 20, 433 (1977).CrossRefGoogle Scholar
[9] Procop, M., Sandow, B., Raidt, H. and Do Son, L., Phys. Stat. Sol. (a) 104, 903 (1987).CrossRefGoogle Scholar
[10] Shih, Y-C., Murakami, M., Wilkie, E.L. and Callegari, A.C., J. Appl. Phys. 62(2), 582 (1987).CrossRefGoogle Scholar
[11] Zhang, X. and Staton-Bevan, A.E., Inst. Phys. Conf. Ser. 82(4), 303 (1987).Google Scholar
[12] Higman, T.K., Emanuel, M.A., Coleman, J.J., Jeng, S.J. and Wayman, C.M., J. Appl. Phys. 60(2), 677 (1986).CrossRefGoogle Scholar
[13] Iliadis, A. and Singer, K.E., Solid State Comm. 49, 99 (1984).CrossRefGoogle Scholar
[14] Kuan, T.S., Batson, P.E., Jackson, T.N., Rupprecht, H. and Wilkie, E.L., J. Appl. Phys. 54(12), 6952 (1983).CrossRefGoogle Scholar
[15] Ogawa, M., J. Appl. Phys. 51(1), 406 (1980).CrossRefGoogle Scholar
[16] Christou, A., Sol. State Electron. 22, 141 (1979).CrossRefGoogle Scholar
[17] Rai, A.K., Ezis, A., McCormick, A.W., Petford-Long, A.K. and Langer, D.W., J. Appl. Phys. 61(9), 4682 (1987).CrossRefGoogle Scholar
[18] Murakami, M., Childs, K.D., Baker, J.M. and Callegari, A., J. Vac. Sci. Technol. B4(4), 903 (1986).CrossRefGoogle Scholar
[19] Heime, K., König, U., Kohn, E. and Wortmann, A., Sol. State Electron. 17, 835 (1974).CrossRefGoogle Scholar
[20] Shappirio, J.R., Lareau, R.T., Lux, R.A., Finnegan, J.J., Smith, D.D., Heath, L.S. and Taysing-Lara, M., J. Vac. Sci. Technol. A5(4). 1503 (1987).CrossRefGoogle Scholar
[21] Grimshaw, M.P. and Staton-Bevan, A.E. in Advances in Materials. Processing and Devices in III-V Compound Semiconductors, edited by Sadana, D.K., Eastman, L.E. and Dupuis, R. (Mater. Res. Soc. Proc. 144, Pittsburgh, PA 1988) pp. 589594.Google Scholar
[22] Herniman, J., Allan, D.A. and O’Sullivan, P.J., I.E.E. Proc. 135(1), 67 (1988).Google Scholar
[23] Reeves, G.K. and Harrison, H.B., I.E.E.E. Electron. Dev. Letts. EDL–3(5). 111 (1982).Google Scholar
[24] Gupta, R.P. and Khokle, W.S., Sol. State Electron. 28(8), 823 (1985).CrossRefGoogle Scholar
[25] Dingfen, W. and Heime, K., Electron. Letts. 18(22), 940 (1982).CrossRefGoogle Scholar
[26] Mojzes, I., Sebestyen, T. and Szigethy, D., Sol. State Electron. 25(6), 449, (1982).Google Scholar
[27] Sands, T., Marshall, E.D. and Wang, L.C., J. Mater. Res. 3(5), 914 (1988).CrossRefGoogle Scholar
[28] Waldrop, J.R. and Grant, R.W., Appl. Phys. Letts. 50(5), 250 (1987)CrossRefGoogle Scholar
[29] Sebestyen, T., Sol. State Electron. 25, 543 (1982).CrossRefGoogle Scholar
[30] Kirillov, D. and Chung, Y., Appl. Phys. Lett. 51(11), 846 (1987).CrossRefGoogle Scholar
[31] Mott, N.F., Phil. Mag. 19, 835 (1969).CrossRefGoogle Scholar
[32] Jaros, M. and Hartnagel, H.L., Sol. State Electron. 18, 1029 (1975)CrossRefGoogle Scholar