Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T03:46:31.915Z Has data issue: false hasContentIssue false

Refractory Semiconductors for High Temperature Thermoelectric Energy Conversion*

Published online by Cambridge University Press:  25 February 2011

Charles Wood*
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109
Get access

Abstract

Thermoelectric energy conversion utilizing nuclear heat sources has been employed for several decades to generate power for deep space probes. In the past, lead telluride and, more recently, silicon-germanium alloys have been the prime choices as thermoelectric materials for this application. Currently, a number of refractory semiconductors are under investigation at the Jet Propulsion Laboratory in order to produce power sources of higher conversion efficiency and, thus, lower mass per unit of power output. Included amongst these materials are improved Si-Ge alloys, rare earth compounds and boron-rich borides. The criteria used to select thermoelectric materials, in general, and the above materials, in particular, will be discussed. The current state of the art and the accomplishments to date in thermoelectric materials research will be reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

References

REFERENCES

1. Joffe, A. F., Semiconductor Thermoelements and Thermoelectric Cooling. Infosearch Limited, London, (1957).Google Scholar
2. Chasmar, R. P., and Stratton, R., J. Electron. Control, 7,52, (1959).Google Scholar
3. Rittner, E. S., J. Appl. Phys., 30,702 (1959).Google Scholar
4. Goldsmid, H. J., and Douglas, R. W., Brit. J. Appl. Phys., 5,386 (1954).Google Scholar
5. Donahoe, F. J., Electi. Engng., 79. 488 (1960).Google Scholar
6. Simon, R., J. Appl. Phys., 33,1830 (1962).Google Scholar
7. Rittner, E. S., and Neumark, G. F., J. Appl. Phys., 34. 2071 (1963).Google Scholar
8. Littman, H., and Davidson, B., J. Appl. Phys., 3 217 (1961).Google Scholar
9. Abeles, B., Phys. Rev. 131,1906 (1963).Google Scholar
10. Steigmeir, E. F. and Abeles, B., Phys. Rev. 136A.1149 (1964).Google Scholar
11. Dismukes, J. P., et al., J. Appl. Phys. 35, 2899 (1964).Google Scholar
12. Rosi, F. D., Solid State Electronics 11, 833 (1968).Google Scholar
13. Amith, A., Phys. Rev. A 1624 (1965).Google Scholar
14. Pisharody, R. K. and Garvey, L. P. Proc. 13th Inter. Energy Cony. Eng. Conf. (1978) p. 1963.Google Scholar
15. Vandersande, J., Wood, C., and Draper, S. (this issue)Google Scholar
16. McLane, G., (private communication)Google Scholar
17. Zhuze, V. P., Sergeeva, V. M., and Golikova, O. A., Soy. Phys. Solid State 11, 2071 (1971); 13.6689 (1971).Google Scholar
18. Golikova, O. A., and Rudnik, I. M., Nauk, Izv. Akad., USSR Neorg. Mater., 14 17 (1978).Google Scholar
19. Danielson, L., Raag, V. and Wood, C., Proc. 20th Inter. Energy Cony. Eng. Conf. (1985) p. 531.Google Scholar
20. Hampl, E. F., Hinderman, J. D., Mitchel, W. C., Reylek, R. S. and Wald, D. A., Proc. 10th Inter. Energy Cony. Eng. Conf. (1975) p. 714.Google Scholar
21. Ryan, Greenberg, F. M., Carter, I. N., , F. L., and Miller, R. C.: J. Appl. Ph1ys., 33, 864 (1962).Google Scholar
22. Cutler, M., Appel, J. C., Guthrie, G. L., and Kurnick, S. W., Final Report, Contract No.: BS-77144. ARPA Order No. 8159, August 31, 1962.Google Scholar
23. Taher, S. M., and Gruber, J. B., Mat. Res. Bull., 16 1407 (1981).Google Scholar
24. Kamarzin, A. A., Mirnov, K. E., Sokolov, V. V., Malovitsky, Yu N., and Vasilyera, I. G., J. Cryst. Growth, 52 619 (1981).Google Scholar
25. Ramsey, T. H., Steinfink, H. and Weiss, E. J.. J. Appl. Phys. 36 548 (1965).Google Scholar
26. Danielson, L. R., (private communication).Google Scholar
27. Shapsheva, N. P., Kuzmicheva, G. M., lksanova, T. G., and Eliseev, A. A., Akad, Izv., Nauk, , USSR, Neorg. Mater 14 21 (1978).Google Scholar
28. Didchenko, R. and Gortesma, F. P., J. Phys. Chem. Solids, 24 863 (1963).Google Scholar
29. Goryachev, Yu. M., Kutsenok, T. G., Zadvornyi, L. J., Akad, Izv. USSR Neorg. Mat. 4 1912 (1968).Google Scholar
30. Takashita, T., Beaudry, B. J., and Gschneidner, K. A., Proc. 16th Inter. Energy Cony. Eng. Conf. (1981) p. 1193.Google Scholar
31. Danielson, L. R., Alexander, M. N., Wood, C., Lockwood, R. A. and Vandersande, J. W. Proc. 22nd Inter. Energy Cony. Eng. Conf. 1 (1987).Google Scholar
32. Ure, R. W., and Heikes, R. R., Thermoelectricity: Science and Engineering, Interscience, 339 (1961).Google Scholar
33. Wood, C., and Emin, D., P hys. Rev. B., 29, 8, (1984).Google Scholar
34. Golikova, O. A., Phys. Stat. Sol. (a),51,11 (1979).Google Scholar
35. Matkovich, V. I., Boron and Refractory Borides, Springer-Verlag, (1977).Google Scholar
36. Samsonov, G. V. et al., Boron, its Compounds and Alloys. NTIS Publication, A EC-TR-5032, July 1962.Google Scholar
37. Werheit, H., and Leis, H. G., Phys. Stat. Solk 41 247 (1970).Google Scholar
38. Berezin, A. A. et al., Boron and Refractory Borides, ed. Matkovich, V. I., Springer Verlag, NY (1977).Google Scholar
39. Golikova, O. A. et al., J. Less-Comm. Metals, 47 129 (1976).Google Scholar
40. Werheit, H., deGroot, K., and Malkemper, W., J. Less Common Metals, 2 153 (1981).Google Scholar
41. Venturini, E. L., Azevedo, L. J., Emin, D. and Wood, C., Boron-rich Solids A.I.P. New York (1986) p. 292.Google Scholar
42. Emin, D., Physics Today, Jan. (1987) p. 55.Google Scholar
43. Pistoulet, B., Robert, J. L., Dusseau, J. M., Roche, F. M., Girard, P., Phys. Semicond. (1979) p. 793.Google Scholar
44. Djafarov, E. P., Golikova, O. A., and Aliyev, M. I., Akad. Nauk Azerb. USSR Doklady 36, 523, 36,18 (1980).Google Scholar
45. Lockwood, A., Wood, C., Reynolds, G. H., and Eisner, N., Electrochemical Soc. Mtg., Minneapolis, Ml. May 10, 1981.Google Scholar
46. Wood, C., Emin, D. and Gray, P. E., Phys. Rev. 31 6811, (1985).Google Scholar
47. Golikova, O. A., Zaitsev, V. K., Orlov, V. M., Petrov, A. V., Stilbans, L. S. and Tkalenko, E. N., Phys. Stat Sol (a) 21, 405, (1974).Google Scholar
48. Darrolles, J.M., Lepetre, T., and Dusseau, J.M., Phys. Stat. Sol.(a) 58 K71. (1980).Google Scholar
49. Petrov, A. V., et al., Soy. Phys. Solid State, 11, 741 (1969).Google Scholar
50. Slack, G. A., Oliver, C. W., and Horn, F. H., Phys. Rev., 4,1714 (1971).Google Scholar
51. Golikova, O. A., et al., Soy. Phys. Semicond. 13 486 (1979).Google Scholar