Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T10:37:17.453Z Has data issue: false hasContentIssue false

Reactive Mesogenes: Synthesis and Application in Optoelectronic Devices

Published online by Cambridge University Press:  15 March 2011

Peter Strohriegl
Affiliation:
Bayreuth University, Macromolecular Chemistry I and Bayreuth Institute of Macromolecular Research (BIMF), D-95440 Bayreuth, GERMANY, e-mail:, [email protected]
Doris Hanft
Affiliation:
Bayreuth University, Macromolecular Chemistry I and Bayreuth Institute of Macromolecular Research (BIMF), D-95440 Bayreuth, GERMANY, e-mail:, [email protected]
Markus Jandke
Affiliation:
Bayreuth University, Macromolecular Chemistry I and Bayreuth Institute of Macromolecular Research (BIMF), D-95440 Bayreuth, GERMANY, e-mail:, [email protected]
Thomas Pfeuffer
Affiliation:
Bayreuth University, Macromolecular Chemistry I and Bayreuth Institute of Macromolecular Research (BIMF), D-95440 Bayreuth, GERMANY, e-mail:, [email protected]
Get access

Abstract

Reactive mesogenes posess polymerizable groups attached to a rigid, liquid crystalline core. From such molecules, densely crosslinked networks in which the liquid crystalline order is permanentely fixed can be formed by photopolymerization.

Our major synthetic goal was the formation of glass forming reactive mesogenes. Such compounds do not crystallize upon cooling but vitrify and form supercooled LC-phases ('LC-glasses'). They exhibit broad LC-phases and enable us to carry out photopolymerization in a broad range of temperatures.

We have systematically investigated how the topology of the reactive mesogenes influences the stability of the resulting glasses. Comparing twin molecules with three- and four-armed stars we found that the supercooled LC-phase in the three-armed stars has a stability superior to both twin molecules and four-armed stars. In the three-armed star Triple-4 with a suitable substituent pattern the supercooled LC-phase is stable at room temperature for at least nine months. Doped with suitable chiral molecules the glass forming nematics form cholesteric phases which were used for cholesteric polymer networks and for polarization holograms with one s-and one p-polarized writing beam.

Furthermore we have extended our synthetic efforts to reactive mesogenes with three or five conjugated fluorene units as LC-core. After orientation, the mesogenes were photocrosslinked and used as active layer in OLEDs that emit highly polarized blue light.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schadt, M., Fünfschilling, J., Jpn. J. Appl. Phys. 29, 1974 (1990).Google Scholar
2. Broer, D. J., Lub, J., Mol, G. N., Nature 378, 467 (1995).Google Scholar
3. Bunning, T. J., Kreuzer, F., Trends Polym. Sci. 3, 318 (1995).Google Scholar
4. Brehmer, M., Lub, J., Witte, P. v.d., Adv. Mater. 10, 1438 (1998).Google Scholar
5. Witte, P. v. d., Lub, J., Liquid Crystals 26, 1039 (1999).Google Scholar
6. Chen, H. P., Katsis, D., Mastrangelo, J. C., Chen, S. H., Jacobs, S. D., Hood, P. J., Adv. Mater. 12, 1283 (2000).Google Scholar
7. Shi, H., Chen, S. H., Rosa, M. E. de, Bunning, T. J., Adams, W. W., Liquid Crystals 20, 277 (1996).Google Scholar
8. Lub, J., Broer, D. J., Hikmet, R. A. M., Nierop, K. G. J., Liquid Crystals 18, 319 (1995).Google Scholar
9. Kürschner, K., Strohriegl, P., Liquid Crystals 27, 1595 (2000).Google Scholar
10. Pfeuffer, T., Strohriegl, P., Theissen, U., Zilker, S.J., Proceedings of SPIE conference Liquid Crystals V, San Diego (2001), in press.Google Scholar
11. Pfeuffer, T., Hanft, D., Strohriegl, P., Liquid Crystals, in preparation.Google Scholar
12. Broer, D. J., Hikmet, R. A. M., Challa, G., Makromol. Chem. 190, 3201 (1989).Google Scholar
13. Heynderickx, I., Broer, D. J., Mol. Cryst. Liq. Cryst. 203, 113 (1991).Google Scholar
14. Theissen, U., Zilker, S. J., Pfeuffer, T., Strohriegl, P., Adv. Mater. 12, 1698 (2000).Google Scholar
15. Grell, M.. Bradley, D.D.C., Adv. Mater. 11, 902 (1999).Google Scholar
16. Yanagi, H., Okamoto, S., Appl. Phys. Lett. 71, 2563 (1997).Google Scholar
17. Tokuhisa, H., Era, M., Tsutsui, T., Appl. Phys. Lett. 72, 2639 (1998).Google Scholar
18. Lüssem, G., Geffarth, F., Greiner, A., Heitz, W., Hopmeier, M., Oberski, M., Unterlechner, C., Wendorff, J.H., Liquid Crystals 21, 903 (1996).Google Scholar
19. Grell, M., Bradley, D.D.C., Inbasekaran, M., Woo, E.P., Adv. Mater. 9, 798 (1997).Google Scholar
20. Grell, M., Bradley, D.D.C., Long, X., Chamberlain, T., Inbasekaran, M., Woo, E.P., Soliman, M., Acta Polym. 49, 439 (1998).Google Scholar
21. Grell, M., Bradley, D.D.C., Ungar, G., Hill, J., Whitehead, K.S., Macromolecules 32, 5810 (1999).Google Scholar
22. Bacher, A., Bentley, P.G., Bradley, D.D.C., Douglas, L.K., Glarvey, P.A., Grell, M., Whitehead, K.S., Turner, M.L., J. Mater. Chem. 9, 2985 (1999).Google Scholar
23. Jandke, M., Strohriegl, P., Whitehead, K., Grell, M., Bradley, D.D.C, Proceedings of SPIE 4105, 338 (2000).Google Scholar
24. Grell, M., Redecker, M., Whitehead, K.S., Bradley, D.D.C., Liquid Crystals 26, 1403 (1999).Google Scholar
25. Jandke, M., Strohriegl, P., Gmeiner, J., Brütting, W., Schwoerer, M., Adv. Mater. 11, 1518 (1999).Google Scholar
26. Jandke, M., Strohriegl, P., Gmeiner, J., Brütting, W., Schwoerer, M., Synth. Met. 111–112, 177 (2000).Google Scholar
27. Werner, E., Meier, M., Gmeiner, J., Herold, M., Brütting, W., Schwoerer, M., Opt. Mater. 9, 109 (1998).Google Scholar
28. Herold, M., Gmeiner, J., Schwoerer, M., Polym. Adv. Technol. 10, 1 (1999).Google Scholar
29. Grell, M., Knoll, W., Lupo, D., Meisel, A., Miteva, T., Neher, D., Nothofer, H.G., Scherf, U., Yasuda, A., Adv. Mater. 11, 671 (1999).Google Scholar
30. Whitehead, K.S., Grell, M., Bradley, D.D.C., Jandke, M., Strohriegl, P., Appl. Phys. Lett. 76, 2946 (2000).Google Scholar