Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T18:21:33.776Z Has data issue: false hasContentIssue false

Raman Analysis of Single Crystalline Bulk Aluminum Nitride: Temperature Dependence of the Phonon Frequencies

Published online by Cambridge University Press:  17 March 2011

Jonathan M. Hayes
Affiliation:
University of Bristol, H.H. Wills Laboratory, Bristol BS8 1TL, United Kingdom
Martin Kuball
Affiliation:
University of Bristol, H.H. Wills Laboratory, Bristol BS8 1TL, United Kingdom
Ying Shi
Affiliation:
Kansas State University, Chemical Engineering Department, Manhattan, KS 66506-5102, U.S.A
James H. Edgar
Affiliation:
Kansas State University, Chemical Engineering Department, Manhattan, KS 66506-5102, U.S.A
Get access

Abstract

The frequencies of the E2(high), A1(LO), A1(TO), E1(TO) and E1(LO) phonons of singlecrystalline bulk AlN were measured using micro-Raman spectroscopy over a temperature range from 10K to 1275K. A modeling of the temperature dependence of the AlN phonon frequencies considering the thermal lattice expansion and two-phonon decay mechanisms gave results in good agreement with the experimental data. At temperatures in excess of ∼300K an approximate linear shift of the phonon frequencies with temperature was found. In this high temperature regime, we determined a frequency shift of the E2(high) phonon of (-2.22 ± 0.02) ×10−2cm−1/K, which is very similar to values reported for bulk GaN. This suggests that similar parameters will be suitable for AlxGa1−xN alloys, commonly used in high-power high-frequency electronic devices. The results provide the basis for non-invasive local temperature monitoring in highpower III-nitride devices using micro-Raman scattering techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Han, J., Crawford, M. H., Shul, R. J., Figiel, J. J., Banas, M., Zhang, L., Song, Y. K., Zhou, H., and Nurmikko, A. V., Appl. Phys. Lett. 73, 1688 (1998).Google Scholar
[2] Li, R., Chai, S. J., Wong, L., Chen, Y., Wang, K. L., Smith, R. P., Martin, S. C., Boutros, S., and Redwing, J. M., IEEE Electron. Dev. Lett. 20, 323 (1999).Google Scholar
[3] McNeil, L. E., Grimsditch, M., and French, R. H., J. Am. Ceram. Soc. 76, 1132 (1993).Google Scholar
[4] Bergman, L., Dutta, M., Balkas, C., Davies, R. F., Christman, J. A., Alexson, D., and Nemanich, R. J., J. Appl. Phys. 85, 3535 (1999).Google Scholar
[5] Liu, M. S., Bursill, L. A., Prawer, S., Nugent, K. W., Tong, Y. Z., and Zhang, G. Y., Appl. Phys. Lett. 74, 3125 (1999).Google Scholar
[6] Siegle, H., Kaczmarczyk, G., Filippidis, L., Litvinchuk, A. P., Hoffmann, A., and Thomsen, C., Phys. Rev. B 55, 7000 (1997).Google Scholar
[7] Edgar, J. H., Robins, L. H., Coatney, S. E., Liu, L., Chaudhuri, J., Ignatiev, K., and Rek, Z., Mater. Sci. Forum 338–342, 1599 (2000).Google Scholar
[8] Loudon, R., Adv. Phys. 13, 423 (1964).Google Scholar
[9] Menéndez, J., and Cardona, M., Phys. Rev. B 29, 2051 (1984).Google Scholar
[10] Iwanaga, H., Kunishige, A., and Takeuchi, S., J. Materials Science 35, 2451 (2000).Google Scholar
[11] Kuball, M., Hayes, J. M., Prins, A. D., Oden, N. W. A. van, Dunstan, D. J., Shi, Y., and Edgar, J. H., accepted for publication in Appl. Phys. Lett.Google Scholar
[12] Kuball, M., Hayes, J. M., Shi, Y., and Edgar, J. H., Proceedings of MRS Fall Meeting 2000, Paper G7.7.Google Scholar
[13] Slack, G. A., and Bartram, S. F., J. Appl. Phys. 46, 89 (1975).Google Scholar
[14] Kozawa, T., Kachi, T., Kano, H., Taga, Y., Hashimoto, M., Koide, N., and Manabe, K., J. Appl. Phys. 75, 1098 (1994).Google Scholar