Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T08:46:00.731Z Has data issue: false hasContentIssue false

Quaternary Chalcogenide Nanocrystals: Synthesis of Cu2ZnSnSe4 by Solid State Reaction and their Thermoelectric Properties

Published online by Cambridge University Press:  06 August 2013

Umme Farva
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea
Chan Park
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea
Get access

Abstract

In this paper, synthesis of Cu2ZnSnSe4 (CZTSe) materials by using simple and cost-effective solid state reaction method from the elemental Cu, ZnO, SnO and elemental Se powders are carried out. The SEM images show spherical, non-uniform size with aggregation of nanopowders. The phase separation and thermal analysis of the milled powders suggested that most of the starting powders reacted because of a mechanical alloying effect during milling process. After the solid state reaction at above 500 °C, the nanopowders crystallized into stannite single phase, which are confirm by XRD spectra. The thermoelectric properties of synthesized powder are under study.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chung, D. Y.; Hogan, T.; Brazis, P.; Rocci-Lane, M.; Kannewurf, C.; Bastea, M.; Uher, C.; Kanatzidis, M. G. Science 2000, 287, 1024.CrossRefGoogle Scholar
Snyder, G. J. and Toberer, E. S., Nat. Mater. 7, 105114 (2008).CrossRefGoogle Scholar
Snyder, G. J. and Toberer, E. S., Nature Materials, 7, 105114, 2008.CrossRefGoogle Scholar
Zoppi, G., Forbes, I., Miles, R. W., Dale, P. J., Sragg, J. J. and Peter, L. M., Prog. Photovolt: Res. Appl. 17, 315319 (2009).CrossRefGoogle Scholar
Chichibu, S. F., Ohmori, T., Shibata, N., Koyama, T. and Onuma, T., J. Phys. Chem. Solids 66, 18681871 (2005).CrossRefGoogle Scholar
Ouahrani, T., Reshak, A. H., Khenata, R., Amrani, B., Mebrouki, M., O-Roza, A. and Luaña, V., J. Solid State Chem. 183, 4651 (2010).CrossRefGoogle Scholar
Fan, F.-J., Yu, B., Wang, Y.-X., Zhu, Y.-L., Liu, X.-J., Yu, S.-H. and Ren, Z., J. Am. Chem. Soc. 133, 1591015913 (2011).CrossRefGoogle Scholar
Matsushita, H., Ichikawa, T. and Katsui, A., J. Mat. Sci. 40, 20032005 (2005).CrossRefGoogle Scholar
Liu, M. L., Chen, I. W., Huang, F. Q. and Chen, L. D., Adv. Mater. 21, 38083812 (2009).CrossRefGoogle Scholar
Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications, edited by Shay, J. L. and Wernick, J. H. (Pergamon, Great Britain, 1975), p. 13.Google Scholar
Zoppi, G., Forbes, I., Miles, R. W., Dale, P. J., Scragg, J. J. and Peter, L. M., Res. Appl. 17, 315319 (2009).Google Scholar
The International Center for Diffraction Data [ICDD 00-034-0171].Google Scholar
Wibowo, R. A., Jung, W. H. and Kim, K. H., J. Phys. Chem. Solids 71, 17021706 (2010).CrossRefGoogle Scholar
Ohtani, T., Motoki, M., Koh, K. and Ohshima, K., Mater. Res. Bull. 30, 14951504 (1995).CrossRefGoogle Scholar
Ohtani, T., Maruyama, K. and Ohshima, K., Mater. Res. Bull. 32, 343350 (1997).CrossRefGoogle Scholar
The International Center for Diffraction Data [ICDD 04-003-8817].Google Scholar