Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:40:02.888Z Has data issue: false hasContentIssue false

Pyroelectric and Piezoelectric Properties of Gan-Based Materials

Published online by Cambridge University Press:  10 February 2011

M. S. Shur
Affiliation:
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, [email protected]
A. D. Bykhovski
Affiliation:
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA, [email protected]
R. Gaska
Affiliation:
APA Optics, Inc., 2950 N. E. 84th Lane, Blaine, MN 55449, USA
Get access

Abstract

We review pyroelectric and piezoelectric properties of GaN-based materials. Pyroelectric effects in GaN have been studied in two different regimes: (i) uniform sample heating regime and (ii) under applied temperature gradient along the sample. The modeling results show that the pyroelectric coefficient, Pv, in GaN (for c-axis along the contacts) can reach 7x105 V/m-K (compared to Pv = 5x105 V/m-K for the best-known high temperature pyroelectric/piezoelectric material LiTaO3). This points to a high potential of GaN-based sensors for high temperature pyroelectronics. Piezoelectric effects strongly affect the performance of electronic and light-emitting devices based on III-N materials. Piezoelectrically induced charge in heterostructures can be as large as 3 to 4x1013 cm-2. Hence, strong lattice polarization effects provide unique possibilities for utilizing GaN-based materials in high temperature piezoelectronics and for their applications in pyroelectric detectors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Jpn. J. Appl. Phys., Part 2 (Letters), 35, 1 B, L7476 (1996)..Google Scholar
2 Nakamura, S., Mukai, T., and Senoh, M., J. Appl. Phys, 76 (12), 8189 (1994).Google Scholar
3 Razeghi, M., and Rogalski, A., J. Appl. Phys., 79(10), 7433 (1996).Google Scholar
4 Shur, M. S., and Khan, M. A., (1997 a). MRS Bulletin. 22, No. 2, 4450.Google Scholar
5 Burm, J., Chu, K., Schaff, W. J., Eastman, L. F., Khan, M. A., Chen, Q., Yang, J. W., and Shur, M. S., IEEE Electron Device Letters 18, No. 4, 141 (1997).Google Scholar
6 Thibeault, B. J., Keller, B. P., Wu, Y. F., Fini, P., Mishra, U. K., Nguyen, C., Nguyen, N., and Le, M., High Performance and Large Area Flip-Chip Bonded AlGaN/GaN MODFET. (IEDM-97 Technical Digest, IEEE, San Francisco, 1997).Google Scholar
7 Binari, S. C., Redwing, J. M., Kelner, G., and Kruppa, W., Electronics Letters 33 (3), 242 (1997).Google Scholar
8 Gaska, R., Yang, J., Osinsky, A., Bykhovski, A. D., and Shur, M. S., Appl. Phys. Lett. 71 (25), 3673 (1997).Google Scholar
9 Gaska, R., Chen, Q., Yang, J., Osinsky, A., Khan, M. A., and Shur, M. S., IEEE Electron Device Letters. 18, No. 10, 492 (1997).Google Scholar
10 Gaska, R., Yang, J., Osinsky, A., Khan, M. A., and Shur, M. S., Novel High Power AIGaN/GaN HFETs on SiC substrates, (IEDM-97 Technical Digest, 1997), pp. 565568.Google Scholar
11 Shur, M. S., and Khan, M. A., Physica Scripta, T69, 103 (1997).Google Scholar
12 Shur, M. S., Bykhovski, A. D., Gaska, R., and Khan, M. A., GaN-based Pyroelectronics and Piezoelectronics, in Semiconductor Homo- and Hetero-Device Structures, Francombe, M. and Wood, C. E. C., Editors, Academic press, to be published.Google Scholar
13 Fraden, J., Handbook of Modern Sensors, (Springer, New York, 1996), p. 536.Google Scholar
14 Khan, M. A., Kuznia, J. N., Hove, J. M. Van, Olson, D. T., Krishnankutty, S., and Kolbas, R. M. Appl. Phys. Lett. 58 (5), 526 (1991).Google Scholar
15 Bykhovski, A. D., Kaminski, V. V., Shur, M. S., Chen, Q. C., and Khan, M. A., Appl. Phys. Lett. 69, 3254 (1996).Google Scholar
16 Bayazitolu, Y., and Ozisik, M. N., “Elements of Heat Transfer”, (McGraw-Hill Book Company, New York, 1988), pp. 1822.Google Scholar
17 Bykhovski, A. D., Gelmont, B. L., and Shur, M. S., J. Appl. Phys. 81 (9), 6332 (1997).Google Scholar
18 Shur, M. S., Gelmont, B., and Khan, A., J. Electronic Materials 25, 777 (1996).Google Scholar
19 Littlejohn, M. A., Hauser, J. R., and Glisson, T. H., Appl. Phys. Lett. 26 (11), 625 (1975).Google Scholar
20 Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56(16), 10024 (1997).Google Scholar
21 Bykhovski, A., Gelmont, B., and Shur, M. S., J. Appl. Phys. 74(11), 6734 (1993).Google Scholar
22 Bykhovski, A., Gelmont, B., Shur, M. S., and Khan, A., Institute of Physics Conference Series Number 137, 691 (1994).Google Scholar
23 Bykhovski, A., Gelmont, B., Shur, M. S., and Khan, A., J. Appl. Phys. 77(4), 1616 (1995).Google Scholar
24 Bykhovski, A. D., Gaska, R., and Shur, M. S., Appl. Phys. Lett. 73 (24), 3577 (1998).Google Scholar
25 Gaska, R., Yang, J., Bykhovski, A. D., Shur, M. S., Kaminski, V. V., Soloviev, S. M., Applied Physics Letters 72 (1), 6466 (1998).Google Scholar
26 Asbeck, P. M., Yu, E. T., Lau, S. S., Sullivan, G. J., Hove, J. Van, and Redwing, J. M., Electron. Lett. 33, 1230 (1997).Google Scholar
27 Yu, E. T., Sullivan, G. J., Asbeck, P. M., Wang, C. D., Qiao, D., and Lau, S. S., Appl. Phys. Lett. 71 (19), 2794 (1997).Google Scholar
28 Wang, J., Jeon, J. B., Sirenko, Yu. M., and Kim, K. W., Photonics Technol. Lett. 9 (6), 728 (1997).Google Scholar
29 Martin, G., Botchkarev, A., Rockett, A., Morkoq, H., Appl. Phys. Lett. 68(18), 2541 (1996).Google Scholar
30 Hangleiter, A., Im, Jin Seo, Kollmer, H., Heppel, S., Off, J., Scholz, F., MRS Internet J. Nitride Semicond. Res. 3, 15 (1998).Google Scholar
31 Sun, C. J., Anwar, M. Z., Chen, Q., Yang, J. W., Khan, M. A., Shur, M. S., Bykhovski, A. D., Weber, S. L., Smith, M., Lin, J. Y., and Xiang, H. X., Appl. Phys. Lett. 70, 2978 (1997).Google Scholar
32 Takeuchi, T., Wetzel, C., Yamaguchi, S., Sakai, H., Amano, H., Akasaki, I., Kaneko, Y., Nakagawa, S., Yamaoka, Y., and Yamada, N. N., Appl. Phys. Lett. 73 (12), 1691 (1998).Google Scholar
33 Hellman, E. S., MRS Internet J. Nitride Semicond. Res. 3, 11 (1998).Google Scholar
34 Shur, M. S., and Khan, M. A., MRS Bulletin. 22, No. 2, 4450 (1997).Google Scholar
35 Maeda, N., Nishida, T., Kobayashi, N., and Tomizawa, M. (1998). Appl. Phys. Lett. 73 (13), 18561858.Google Scholar
36 Ivchenko, E. L., Pikus, P. E., Superlattices and other heterostructures: symmetry and optical phenomena (Springer Verlag, Berlin, New York 1995).Google Scholar
37 Romano, L. T., Northrup, J. E., and O'Keefe, M. A., Applied Physics Letters. 69(16), 23942396 (1996).Google Scholar
38 Gaska, R., Yang, J., Bykhovski, A. D., Shur, M. S., Kaminski, V. V., Soloviev, S. M., Appl. Phys. Lett. 71(26), 3817 (1997).Google Scholar
39 Fridkin, V. M., Ferroelectrics-Semiconductors (Nauka, Moscow, 1976), p. 90.Google Scholar
40 Selyuk, B. V., Ferroelectrics. 6, 3740 (1973).Google Scholar
41 Khan, M. A., Shur, M. S., Chen, Q. C., and Kuznia, J. N., Electronics Letters 30, No. 25, 21752176 (1994).Google Scholar
42 Khan, M. A., Shur, M. S., Chen, Q. C., Kuznia, J. N., and Sun, C. J., Electronics Letters 31, 398400 (1995).Google Scholar