Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:40:30.070Z Has data issue: false hasContentIssue false

Processing, Microstructure, and Properties of Multiphase Mo Silicide Alloys

Published online by Cambridge University Press:  10 February 2011

C. T. Liu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6115
J. H. Schneibel
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6115
L. Heatherly
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6115
Get access

Abstract

Multiphase Mo silicide alloys containing T2 (Mo5SiB2), Mo3Si and Mo phases were prepared by both melting & casting (M&C) and powder metallurgical (PM) processes. Glassy phases are observed in PM materials but not in M&C materials. Microstructural studies indicate that the primary phase is Mo-rich solid solution in alloys containing ≤(9.4Si+13.8B, at. %) and T2 in alloys with ≥(9.8Si+14.6B). An eutectic composition is estimated to be close to Mo–9.6Si–14.2B. The mechanical properties of multiphase silicide alloys were determined by hardness, tensile and bending tests at room temperature. The multiphase alloy MSB-18 (Mo–9.4Si–13.8B) possesses a flexure strength distinctly higher than that of MoSi2 and other Mo5Si3 silicide alloys containing no Mo particles. Also, MSB-18 is tougher than MoSi2 by a factor of 4.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thom, A. J., Meyer, M. K., Kim, Y., and Akinc, M., in “Processing and Fabrication of advanced Materials III,” Ravi, V. A. et al., eds., TMS, p. 413 (1994).Google Scholar
2. Meyer, M. K., Kramer, M. J., and Akinc, M., Intermetallics, 4, 273 (1996).Google Scholar
3. Meyer, M. K., Kramer, M. J., and Akinc, M., Adv. Mater. 8, 85 (1996).Google Scholar
4. Perepezko, J. H., Nunes, C. A., Yi, S. -H., and Thoma, D. J., MRS Proc. Vol.460, C. C. Koch et al., eds., pp. 314 (1997).CrossRefGoogle Scholar
5. Nunes, C. A., Sakidja, R., and Perepezko, J. H., in “Structural Intermetallics 1997”, Nathal, M. V. et al., eds., TMS, pp. 831–39 (1997).Google Scholar
6. Schneibel, J. H.. Liu, C. T., Heatherly, L., and Kramer, M. J., Scr. Mater. 38, 1169 (1998) and 39, 831 (1998).Google Scholar
7. Nowotny, H., Dimakopoulou, E., and Kudielka, H., Mh. Chem., 88, 180 (1957).Google Scholar
8. Berczik, D. M., United States Patent No. 5,595,616 (1997).Google Scholar
9. Hebsur, M. G. and Nathal, M. V., in “Structural Intermetallics 1997”, Nathal, M. V. et al., eds., TMS, 949–58 (1997).Google Scholar
10. Gac, F. D. and Petrovic, J. J., J. Am. Ceram. Soc. 68, C200 (1985).CrossRefGoogle Scholar
11. Chin, S., Anton, D. L., and Giamei, A. F., “Advanced MoSi2 Compositions”, Final Technical Report, AFSOR, R95–970281-4 (1996).Google Scholar