Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:57:56.519Z Has data issue: false hasContentIssue false

Pressure Effect of Seebeck Coeffcient for Zinc Doped Tin Clathrates

Published online by Cambridge University Press:  21 March 2011

F. Chen
Affiliation:
Advanced Material Research Institute, University of New Orleans, New Orleans, LA 70108, U.S.A
K. L. Stokes
Affiliation:
Advanced Material Research Institute, University of New Orleans, New Orleans, LA 70108, U.S.A
G. S. Nolas
Affiliation:
Department of Physics, University of South Florida, Tampa, FL 33620, U.S.A
Get access

Abstract

We measured the temperature dependence of electrical resistance (R) and thermopower (S) of Cs8Zn4Sn42 under high pressure up to 1.2 GPa. Both R and ∣S∣ at room temperature increased with pressure. We observed gap widening, irreversible ∣S∣ increasing under high pressure, which were similar to the behaviors of Cs8Sn44. However, the relaxation e.ect of R for Cs8Zn4Sn42 was negligible in contrast with that of Cs8Sn44. We found that the power factor S2σ (σ: electrical conductivity) near room temperature decreased linearly with pressure. The results suggest that the defects in different forms played an important role in transport properties for tin clathrates under high pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wright, D. A., Nature 181, 834 (1958).Google Scholar
[2] Slack, G. A. and Tsoukala, V. G., J. Appl. Phys. 76, 1665 (1994).Google Scholar
[3] Venkatasubramanian, R., Silvola, E., Colpitts, T., and O'Quinn, B., Nature 413, 597 (2001).Google Scholar
[4] Cohn, J. L., Nolas, G. S., Fessatidis, V., Metcalf, T. H., and Slack, G. A., Phys. Rev. Lett. 82, 779 (1999).Google Scholar
[5] Slack, G. A., Thermoelectric Handbook, CRC Press, Boca Raton, FL, 1995.Google Scholar
[6] Nolas, G., Mater. Res. Soc. Symp. Proc., volume 545, MRS, Warrendale, 1999.Google Scholar
[7] Tse, J. S. et al. , Phys. Rev. Lett. 85, 114 (2000).Google Scholar
[8] Kuznetsov, V. L., Kuznetsov, L. A., Kaliazin, A. E., and Rowe, D. M., J. of Appl. Phys. 87, 7871 (2000).Google Scholar
[9] Bundy, F. P. and Kasper, J. S., High Temp.-High Press. 2, 429 (1970).Google Scholar
[10] San-Miguel, A. et al. , Phys. Rev. Lett. 83, 5290 (1999).Google Scholar
[11] Ramachandran, G. K. et al. , Journal of Physics: Condensed Matter 12, 4013 (2000).Google Scholar
[12] Dong, J., Sankey, O. F., and Kern, G., Phys. Rev. B 60, 950 (1999).Google Scholar
[13] Meng, J. F., Shekar, N. V. C., Badding, J. V., and Nolas, G. S., J. of Appl. Phys. 89, 1730 (2001).Google Scholar
[14] Nolas, G. S., Cohn, J. L., and Nelson, E., Proc. 18th International Conference on Thermoelectrics, IEEE Press, Baltimore, 1999.Google Scholar
[15] Chen, F., Stokes, K. L., and Nolas, G. S., J. Phys. Chem. Solids (2001), (in press).Google Scholar
[16] Nolas, G. S., Chakoumakos, B. C., Mahieu, B., Long, G. J., and Weakley, T. J. R., Chem. Mater. 12, 1947 (2000).Google Scholar
[17] Chu, C. W., Phys. Rev. Lett. 33, 1283 (1974).Google Scholar
[18] Chen, F., Huang, Z. J., Meng, R. L., Sun, Y. Y., and Chu, C. W., Phys. Rev. B 48, 16047 (1993).Google Scholar
[19] Chen, F., Cooley, J. C., Hults, W. L., and Smith, J. L., Rev. Sci. Instr. 72, 4201 (2001).Google Scholar
[20] Roberts, R. B., Philos. Mag. 36, 91 (1977).Google Scholar
[21] Dong, J., Sankey, O. F., and Myles, C. W., (unpublished).Google Scholar