Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:39:12.104Z Has data issue: false hasContentIssue false

Positron Annihilation Spectroscopy and Small Angle Neutron Scattering Characterization of Nanostructural Features in Irradiated Fe-Cu-Mn Alloys

Published online by Cambridge University Press:  21 March 2011

B. D. Wirth
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
P. Asoka-Kumar
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
R. H. Howell
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
G. R. Odette
Affiliation:
University of California, Santa Barbara, Santa Barbara, CA 93106
P. A. Sterne
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551
Get access

Abstract

Radiation embrittlement of nuclear reactor pressure vessel steels results from a high number density of nanometer sized Cu-Mn-Ni rich precipitates (CRPs) and sub-nanometer matrix features, thought to be vacancy-solute cluster complexes (VSC). However, questions exist regarding both the composition of the precipitates and the defect character and composition of the matrix features. We present results of positron annihilation spectroscopy (PAS) and small angle neutron scattering (SANS) characterization of irradiated and thermally aged Fe-Cu and Fe-Cu-Mn alloys. These complementary techniques provide insight into the composition and character of both types of nanoscale features. The SANS measurements indicate populations of CRPs and VSCs in both alloys. The CRPs are coarser in the Fe-Cu alloy and the number densities of CRP and VSC increase with the addition of Mn. The PAS involved measuring both the positron lifetimes and the Doppler broadened annihilation spectra in the high momentum region to provide elemental sensitivity at the annihilation site. The spectra in Fe-Cu-Mn specimens thermally aged to peak hardness at 450°C and irradiated at 288°C are nearly identical to elemental Cu. Positron lifetime and spectrum measurements in Fe-Cu specimens irradiated at 288°C clearly show the existence of long lifetime (∼500 ps) open volume defects, which also contain Cu. Thus the SANS and PAS provide a self-consistent picture of nanostructures composed of CRPs and VSCs and tend to discount high Fe concentrations in the CRPs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Odette, G. R., Scripta Met. 11, (1983) 1183.Google Scholar
2. Odette, G. R., MRS Soc. Symp. Proc. 373, (1995) 137.Google Scholar
3. Pareige, P. and Miller, M. K., App. Surf. Sci. 94/95, (1996) 370.Google Scholar
4. Miller, M. K., Pareige, P. and Burke, M. G., Materials Characterization, 44, (2000) 235.Google Scholar
5. Pareige, P., PhD Dissertation, Rouen University (1994).Google Scholar
6. Beaven, P. A., Frisius, F., Kampmann, R., Wagner, R., and Hawthorne, J. R., ASTM-STP1011, American Society for Testing and Materials, Philadelphia, PA (1989) 243.Google Scholar
7. Odette, G. R. and Lucas, G. E., Radiation Effects & Defects in Solids 144, (1998) 189.Google Scholar
8. Mader, E. V., Ph.D. Dissertation, University of California Santa Barbara (1995).Google Scholar
9. Wirth, B. D., Ph.D. Dissertation, University of California, Santa Barbara (1998).Google Scholar
10. Eason, E. D., Wright, J. E., and Odette, G. R., Improved Embrittlement Correlations for Reactor Pressure Vessel Steels, NUREG/CR-6551, (1998).Google Scholar
11. Odette, G. R. and Wirth, B. D., J. Nucl. Mater. 251, (1997) 157.Google Scholar
12. Odette, G. R., Liu, C. L. and Wirth, B. D., MRS Symp. Proc. 439, (1997) 457.Google Scholar
13. Puska, M.J., Lanki, P. and Niemen, R. M., J. Phys. Condens. Matter 1, (1989) 6081.Google Scholar
14. Glinka, C. J., Rowe, J. M. and laRock, J. G., J. of Applied Crystallography 19, (1986) 427.Google Scholar
15. Howell, R.H., Sterne, P.A., Hartley, J., Cowan, T.E., Appl. Surf. Sci. 149, (1999) 103.Google Scholar
16. Asoka-Kumar, P., Alatalo, M., Ghosh, V. J., Kruseman, A. C., Nielsen, B. and Lynn, K. G., Phys. Rev. Letters 77, (1996) 2097.Google Scholar
17. Nagai, Y., M Hasegawa, Tang, Z., Hempel, A., Yubata, K., Shimamura, T., Kawazoe, Y., Kawai, A. and Kano, F., Phys. Rev. B 61, (2000) 6574.Google Scholar