Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T17:24:37.007Z Has data issue: false hasContentIssue false

Porous Silicon Photoluminescence Versus HF Etching: No Correlation with Surface Hydrogen Species

Published online by Cambridge University Press:  28 February 2011

M. B. Robinson
Affiliation:
Dept. of Chemistry and Biochemistry, Univ. of Colorado, Boulder, CO 80309
A. C. Dillon
Affiliation:
Dept. of Chemistry and Biochemistry, Univ. of Colorado, Boulder, CO 80309
S. M. George
Affiliation:
Dept. of Chemistry and Biochemistry, Univ. of Colorado, Boulder, CO 80309
Get access

Abstract

The photoluminescence and infrared absorbance of electrochemically anodized porous silicon samples were examined as a function of hydrofluoric acid (HF) etching time. Transmission FTIR spectroscopy measurements revealed that the infrared absorbance from silicon hydrogen surface species was largest for the initial porous silicon samples and immediately decreased with HF etching. In contrast, the photoluminescence did not appear until after HF etching times of 20–80 minutes, depending on initial sample porosity. Subsequently, the photoluminescence intensity increased, reached a maximum, and then progressively decreased versus HF etching time. These HF etching results demonstrate that there is no direct correlation between the photoluminescence and the silicon hydrogen surface species.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Uhlir, A., Bell. Sys. Tech. 35, 333 (1956).Google Scholar
2. Turner, D.R., J. Electrochem. Soc. 105, 402 (1958).Google Scholar
3. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
4. Cullis, A.G. and Canham, L.T., Nature 353, 335 (1991).Google Scholar
5. Bsiesy, A., Vial, J.C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Halimaoui, A. and Bomchil, G., Surf. Sci. 254, 195 (1991).Google Scholar
6. Sagnes, I., Halimaoui, A., Vincent, G. and Badoz, P.A., Appl. Phys. Lett, (in press).Google Scholar
7. Perez, J.M., Villalobos, J., McNeill, , Prasad, J., Cheek, R., Kelber, J., Estrera, J.P., Stevens, P.D. and Glosser, R., Appl. Phys. Lett. 61, 563 (1992).Google Scholar
8. Tsai, C., Li, K.-H., Sarathy, J., Shih, S., Campbell, J.C., Hance, B.K. and White, J.M., Appl. Phys. Lett. 59, 2814 (1991).Google Scholar
9. Tsai, C., Li, K.-H., Kinosky, D.S., Qian, R.-Z., Hsu, T.-C., Irby, J.T., Banerjee, S.K., Tasch, A.F., Campbell, J.C., Hance, B.K. and White, J.M., Appl. Phys. Lett. 60, 1700 (1992).Google Scholar
10. Prokes, S.M., Freitas, J.A. and Searson, P.C., Appl. Phys. Lett. 60, 3295 (1992).Google Scholar
11. Prokes, S.M., Carlos, W.E. and Bermudez, V.M., Applied Physics Letters 61, 1447 (1992).Google Scholar
12. McCord, P., Yau, S.L. and Bard, A.J., Science 257, 68 (1992).Google Scholar
13. Brandt, M.S., Fuchs, H.D., Stutzmann, M., Weber, J. and Cardona, M., Solid State Comm. 81, 307 (1992).Google Scholar
14. Gupta, P., Colvin, V.L. and George, S.M., Phys. Rev. 37, 8234 (1988).Google Scholar
15. Bomchil, G., Herino, R., Baria, K. and Pfister, J.C., J. Electrochem. Soc. 130, 1611 (1983).Google Scholar
16. Gupta, P., Dillon, A.C., Bracker, A.S. and George, S.M., Surf. Sci. 245, 360 (1991).Google Scholar
17. Dillon, A.C., Gupta, P., Robinson, M.B., Bracker, A.S. and George, S.M., J. Vac. Sci. Technol. A 9, 2222 (1991).Google Scholar
18. Dillon, A.C., Robinson, M.B., Han, M.Y. and George, S.M., J. Electrochem. Soc. 139, 537 (1992).Google Scholar
19. Robinson, M.B., Dillon, A.C., Haynes, D.R. and George, S.M., Appl. Phys. Lett. 61, 1414 (1992).Google Scholar
20. Tsai, C., Li, K.-H., Campbell, J.C., Hance, B.K. and White, J.M., J. Elect. Mat. 21, 589 (1992).Google Scholar
21. Suemune, I., Noguchi, N. and Yamanishi, M., Jpn. J. Appl. Phys. 31, L494 (1992).Google Scholar
22. Tischler, M.A., Collins, R.T., Stathis, J.H. and Tsang, J.C., Appl. Phys. Lett. 60, 639 (1992).Google Scholar
23. Collins, R.T., Tischler, M.A. and Stathis, J.H., Appl. Phys. Lett. 61, 1649 (1992).Google Scholar
24. Petrova-Koch, V., Muschik, T., Kux, A., Meyer, B.K., Koch, F. and Lehmann, V., Appl. Phys. Lett. 61, 943 (1992).Google Scholar
25. Bawendi, M.G., Carroll, P.J., Wilson, W.L. and Brus, L.E., J. Chem. Phys. 96, 946 (1992).Google Scholar
26. Beale, M.I.J., Chew, N.G., Uren, M.J., Cullis, A.G. and Benjamin, J.D., Appl. Phys. Lett. 46, 86 (1985).Google Scholar
27. Hu, S.M. and Kerr, D.R., J. Electrochem. Soc. 114, 414 (1967).Google Scholar
28. Kern, W. and Deckert, C.A., Thin Film Processes; edited by Vossen, J. L. and Kern, W. (Academic Press: New York, 1978) p 401.Google Scholar
29. Wolfe, J.P., Phys. Today March, 46 (1982).Google Scholar