Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T19:56:49.553Z Has data issue: false hasContentIssue false

Plasma Enhanced Metalorganic Chemical Vapor Deposition of Conductive Oxide Electrodes for Ferroelectric BaTiO3 Capacitors

Published online by Cambridge University Press:  21 February 2011

Jiming Zhang
Affiliation:
Advanced Technology Materials, Inc., 7 Commerce Drive, Danbury, CT 06810
Guang-Ji Cui
Affiliation:
Advanced Technology Materials, Inc., 7 Commerce Drive, Danbury, CT 06810
Douglas Gordon
Affiliation:
Advanced Technology Materials, Inc., 7 Commerce Drive, Danbury, CT 06810
Peter Van Buskirk
Affiliation:
Advanced Technology Materials, Inc., 7 Commerce Drive, Danbury, CT 06810
John Steinbeck
Affiliation:
Advanced Technology Materials, Inc., 7 Commerce Drive, Danbury, CT 06810
Get access

Abstract

Thin film heterostructures of BaTiO3/YBa2Cu3O7-x (YBCO) and BaTiO3/LaxSrl-xCoO3 (LSCO) have been prepared by a novel single liquid source plasma-enhanced metalorganic chemical vapor deposition (PE-MOCVD) process. Both YBCO and LSCO are conductive oxides with perovskite structure and lattice parameters closely matched to BaTiO3. YBCO films were found to deteriorate after the deposition of BaTiO3 under the PE-MOCVD conditions as revealed by X-ray diffraction and electrical characterization. LSCO thin films prepared by PE-MOCVD have a mirror-like surface, exhibit low electrical resistivity (p = 200 μΩ-cm at room temperature) and are robust to BaTiO3 deposition. These characteristics make LSCO a promising electrode material for ferroelectric capacitors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

1. VLSI Fabrication Principles, Ghandhi, S.K., John Wiley & Sons, Inc., (1983).Google Scholar
2. Silicon Processing for the VLSI Era, Wolf, S.., Lattice Press, (1990).Google Scholar
3. Bondurant, D. and Gnadinger, F., IEEE Spectrum, 7, 30 (1989).CrossRefGoogle Scholar
4. Scott, J.F. and Araujo, C.A. Paz de, Science, 246,1400 (1989).CrossRefGoogle Scholar
5. Haertling, G.H., J. Vac. Sci. Technol., A9, 414 (1991).CrossRefGoogle Scholar
6. Salaneck, W., Ferroelectrics, 4, 97 (1972).CrossRefGoogle Scholar
7. Hrenn, P.D., Rou, S.H., Al-Shareef, H.N., Ameen, M.S., Auciello, O., and Kingon, A.I., in Proc. of 3rd International Symposium on Integrated Ferroelectrics, p 612 (1991).Google Scholar
8. Kwok, C.K., Vijay, D.P., Desu, S.B., Parikh, N.P., and Hill, E.A., in 4th International Symposium on Integrated Ferroelectrics, (1992).Google Scholar
9. Ramesh, R., A.Inam, Wilkens, B., Chan, W.K., Sands, T., Tarascon, J.M., Fork, D.K., Geballe, T.H., Evans, J., and Bullington, J., Appl. Phys. Lett., 59, 1783(1991).Google Scholar
10. Ramesh, R., Chan, W.K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J.M., Keramidas, V.G., Fork, D.K., Lee, J., and Safari, A., Appl. Phys. Lett., 61, 1537(1992).Google Scholar
11. Cheung, J.T., Morgan, P.E., Lowndes, D.H., Zhang, X.Y., and Breen, J., Appl. Phys. Lett., in press.Google Scholar
12. Eom, G.B., Cava, R.J., Fleming, R.M., Phillips, J.M., Dover, R.B. Van, Marshall, J.H., Hsu, J.W.P., Krajewski, J.J., and Peck, W.F., Science, 258, 1766 (1992).CrossRefGoogle Scholar
13. Zhang, Jiming, Gardiner, Robin A., Kirlin, Peter S., Boerstler, Robert W., and Steinbeck, John, Appl. Phys. Lett. 61, 2884 (1992).Google Scholar
14. Buskirk, P. Van, Gardiner, R. P., Kirlin, P. S., J. Vac. Sci. Technol.,A10, 1578 (1992).CrossRefGoogle Scholar
15. Kirlin, P.S., Binder, R.L., Gardiner, R.A., U.S. Patent No. 5,204,314 (20 April, 1993).Google Scholar
16. Sakuma, T., Yamamichi, S., Matsubara, S., Yamaguchi, H., and Miyasaka, Y., Appl. Phys. Lett. 57, 2431 (1990).Google Scholar