Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:40:26.938Z Has data issue: false hasContentIssue false

Physical origin of colossal dielectric constant in CaCu3Ti4O12 thin film by Pulsed Laser Deposition

Published online by Cambridge University Press:  01 February 2011

Guochu Deng
Affiliation:
[email protected], Ecole Polytechnique Fédérale de Lausanne, Ceramics Laboratory, EPFL-STI-IMX-LC, Station 12, Lausanne, CH1015, Switzerland, 0041-021-693 58 69, 0041-021-693 58 10
Tomoaki Yamada
Affiliation:
[email protected], Ecole Polytechnique Federale de Lausanne, Ceramics Laboratory, Station 12, Lausanne, CH1015, Switzerland
Paul Muralt
Affiliation:
[email protected], Ecole Polytechnique Federale de Lausanne, Ceramics Laboratory, Station 12, Lausanne, CH1015, Switzerland
Get access

Abstract

The (001) preferentially oriented CCTO thin film was grown on Pt/Ti/TiO2/Si (100) substrate by pulsed laser. I-V and C-V relationships of the CCTO thin film showed characteristics typical of a tunnel metal-insulator-semiconductor (MIS) structure and its capacitance response is the origin of the high apparent dielectric constant observed in CCTO thin films. The very thin insulating layer on top of the film can be reduced in thickness by treatment in HCl acid, as shown by smaller threshold voltages in the I-V curves. The overall behavior is compatible with a conduction activation energy of ∼80 to 100 meV in the bulk of the film, and a diffusion potential at the interface of 500 to 800 meV. The acceptor concentration is of the order of 1019cm−3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Subramanian, M. A. Li, D. Duan, N. Reisner, B. A. and Sleight, A. W. J. Solid State Chem. 151, 323325 (2000).Google Scholar
2. Ramireza, A. P. Subramanian, M. A. Gardela, M. Blumberga, G. Lib, D. Vogtc, T. and Shapiroc, S. M. Solid State Commun. 115, 217220 (2000).Google Scholar
3. Sinclair, D. C. Adams, T. B. Morrison, F. D. and West, A. R. Appl. Phys. Lett. 80, 21532155 (2002).Google Scholar
4. Lunkenheimer, P. Bobnar, V. Pronin, A. V. Ritus, A. I. Volkov, A. A. and Loidl, A. Phys. Rev. B 66, 052105 (2002).Google Scholar
5. Lunkenheimer, P. Fichtl, R. Ebbinghaus, S. G. and Loidl, A. Phys. Rev. B 70, 172102 (2004).Google Scholar
6. Chung, S.-Y. Kim, I.-D., and Kang, S.-J. L. Nature Mater. 3, 774 (2004).Google Scholar
7. He, L. Neaton, J. B. Cohen, M. H. and Vanderbilt, D. Phys. Rev. B 65, 214112 (2002).Google Scholar
8. Krohns, S. Lunkenheimer, P. Ebbinghaus, S. G. and Loidl, A. Appl. Phys. Lett. In press (2006).Google Scholar
9. Homes, C. C. Vogt, T. Shapiro, S. M. Wakimoto, S. and Ramirez, A. P. Science 293, 673 (2001).Google Scholar
10. Si, W. Cruz, E. M. Johnson, P. D. Barnes, P. W. Woodward, P. and Ramirez, A. P. Appl. Phys. Lett. 81, 20562058 (2002).Google Scholar
11. Lin, Y. Chen, Y. B. Garret, T. Liu, S. W. Chen, C. L. Chen, L. Bontchev, R. P. Jacobson, A. Jiang, J. C. Meletis, E. I. Horwitz, J. and Wu, H.-D., Appl. Phys. Lett. 81, 631633 (2002).Google Scholar
12. Maeder, T. Sagalowicz, L. and Muralt, P. Jpn. J. Appl. Phys. 37, 20072012 (1998).Google Scholar
13. Sarkar, S. Jana, P. K. and Chaudhuri, B. K. Appl. Phys. Lett. 89, 212905 (2006).Google Scholar
14. Adams, T. B. Sinclair, D. C. and West, A. R. J. Am. Ceram. Soc. 89, 2833.2838 (2006).Google Scholar
15. Card, H. C. and Rhoderick, E. H. J. Phys. D: Appl. Phys. 4, 15891601 (1971).Google Scholar
16. Card, H. C. and Rhoderick, E. H. J. Phys. D: Appl. Phys. 4, 16021611 (1971).Google Scholar
17. Cowley, A. M. J. Appl. Phys. 37 (1966).Google Scholar
18. Adams, T. B. Sinclair, D. C. and West, A. R. Phys. Rev. B 73, 094124 (2006).Google Scholar