Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T18:03:45.498Z Has data issue: false hasContentIssue false

Photocurrent in Microcrystalline Hydrogenated Silicon P-I-N Devices

Published online by Cambridge University Press:  10 February 2011

M. Fernandesi
Affiliation:
Electronics Department, ISEL, R. Conselheiro Emidio Navaro, P-1900 Lisboa, Portugal
M. Vieirai
Affiliation:
Electronics Department, ISEL, R. Conselheiro Emidio Navaro, P-1900 Lisboa, Portugal
A. Maqarico
Affiliation:
Electronics Department, ISEL, R. Conselheiro Emidio Navaro, P-1900 Lisboa, Portugal
S. Koynov
Affiliation:
CL-SENES, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria
A. Fantoni
Affiliation:
FCT/UNL, Quinta da Torre, P-2825 Monte da Caparica, Portugal
R. Schwarz
Affiliation:
Department of Physics, IST, Av. Rovisco Pais, P-1096 Lisboa, Portugal
Get access

Abstract

The photocurrent delivered by microcrystalline hydrogenated silicon p-i-n devices and the spectral response are analysed under different applied bias voltage. The spectral response is extended far beyond 900 nm. Under reverse bias the spectral response is high and essentially unchanged while under increasing forward bias it decreases continuously. For forward bias higher than the open circuit voltage, the usual reversal of the spectral response is not observed and the photocurrent remains negative and almost independent of the bias voltage. A heterojunction model based on the presence of additional local electric fields near the grain boundaries is presented to explain this behaviour. Those fields lead to a strong increase of the recombination at the grain boundaries decreasing the contribution from the photogenerated carriers for the secondary photocurrent. Reverse bias restores the electric field at the interfaces minimizing the influence of the local barriers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Meier, J., Dubail, S., Fluckiger, R., Fischer, D., Keppner, H., and Shah, A., Proc. 1st WCPEC (1994) 1237 Google Scholar
2 Kanicki, J., Hasan, E., Griffith, J., Takamori, T., and Tsang, J.C., Mat. Res. Soc. Symp. Proc. 149 (1989) 239 Google Scholar
3 Weisfield, R., and Tsai, C.C., Mat. Res. Soc. Symp. Proc. 192 (1990) 423.Google Scholar
4 Wyrsch, N., Torres, P., Meier, J., and Shah, A., 17th International Conference on Amorphous and Microcrystalline Semiconductors, Budapest (1997).Google Scholar
5 Koynov, S., Schwarz, R., Fischer, T., Grebner, S., and Muender, H., Jpn. J. Appl. Phys. 33 (1994) 4534.Google Scholar
6 Koynov, S., Grebner, S., Radojkovic, P., Hartmann, E., Schwarz, R, Vassilev, L., Krankenhagen, R., Sieber, I., Henrion, W., and Schmidt, M., J. of Non-Cryst. Solids 198–200 (1996) 1012.Google Scholar
7 Krankenhagen, R., Schmidt, M., Henrion, W., Sieber, I., Koynov, S., Grebner, S., and Schwarz, R., Solid State Phenomena 47 (1995) 607.Google Scholar
8 Kusian, W., Pfleiderer, H., and Bullemer, B., Mat. Res. Soc. Symp. Proc. 118 (1988) 183.Google Scholar
9 Kopetzky, W. and Schwarz, R., Appl. Phys. Lett. 62 (1993) 2959.Google Scholar
10 Sze, S. M.: Physic of the Semiconductors Devices, 2nd ed. Wiley, New York, (1981)Google Scholar
11 Liu, H. N., He, Y. L., Wang, F., and Grebner, S., J. of Non-Cryst. Solids 164–166 (1993) 1005.Google Scholar
12 Martins, R., Fantoni, A., and Vieira, M., J. of Non-Cryst. Solids 164&166 (1993) 671.Google Scholar
13 Fantoni, A., Vieira, M., Martins, R., Mat. Res. Soc. Symp. Proc. 467 (1997) 765.Google Scholar