Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T06:51:39.670Z Has data issue: false hasContentIssue false

Perpendicular Magnetic Anisotropy in Nanostructured Pseudomorphic Fe(110) Films on W(110)

Published online by Cambridge University Press:  10 February 2011

H.J. Elmers
Affiliation:
Physikalisches Institut, Technische Universität Clausthal, 3867S Clausthal, Germany
N. Weber
Affiliation:
Physikalisches Institut, Technische Universität Clausthal, 3867S Clausthal, Germany
K. Wagner
Affiliation:
Physikalisches Institut, Technische Universität Clausthal, 3867S Clausthal, Germany
J. Hauschild
Affiliation:
Physikalisches Institut, Technische Universität Clausthal, 3867S Clausthal, Germany
U. Gradmann
Affiliation:
Physikalisches Institut, Technische Universität Clausthal, 3867S Clausthal, Germany
Get access

Abstract

Pseudomorphic Fe(110) films, deposited on W(110) at room temperature, with a mean thickness of 1.5 monolayers. are composed of double layer islands with a diameter of the order of 10 nm on a monolayer sea. The double layer islands are ferromagnetic (superparamagnetic) below 500 K, the monolayer sea becomes ferromagnetic below 222 K. Magnetic anisotropy is uniaxial in both components. The easy axis is perpendicular to the film plane in the double layer islands and within the film plane (along [110]) in the monolayer sea. The perpendicular anisotropy in the double layer islands apparently is caused by the pseudomorphic strain. The lateral scale for the anisotropy switching roughly coincides with the exchange lengths in both media. The strength of the exchange interaction between double layer islands rapidly increases when the monolayer sea becomes ferromagnetic.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wieseiidaiiger, R.. Bode, M., Kleiber, M., Löhiidorf, M., Pascal, R., Wadas, A. and Weiss, D.. J. Vac. Sci. Techiiol. B in the press (1997).Google Scholar
[2] Giergiel, J.. Shen, J.. Woltersdorf, J.. Kirilyuk, A. and Kirschner, J., Phys. Rev. B 02. 8528 (1995).Google Scholar
[3] Sander, D., Skomski, R., Schmidthals, C., Enders, A., Kirschuer, J.. Phys. Rev. Lett. 77. 2566 (1996).Google Scholar
[4] Elmers, H‥J.. Hauschild, J.. Höche, H., Gradmann, U.. Bethge, H., Heuer, D. and Köhler, U.. Phys. Rev. Lett 73. 898 (1994).Google Scholar
[5] Elmers, H.J.. Hauschild, J.. Fritzsche, H., Lin, G., Gradinami, U. and Köhler, U.. Phys. Rev. Lett. 75, 2031 (1995).Google Scholar
[6] Weber, N., Wagner, K., Elmers, H.J., Hauschild, J. and Gradinami, U., submitted to Phys. Rev. B (1997).Google Scholar
[7] Weber, W.. Kerkmann, D.. Pescia, D., Wesner, D.A. and Güntherodt, G.. Phys. Rev. Lett. 65. 2058 (1990).Google Scholar
[8] Back, C.H., Würsch, C., Vaterlaus, A., Ramsperger, U., Maier, U. and Pescia, D.. Nature 378, 597 (1995).Google Scholar
[9] Skomski, R.. Sander, D.. Enders, A. and Kirsclmer, J., J. Appl. Phys., preprint (1997).Google Scholar
[10] Elmers, H.J., to be published (1997).Google Scholar
[11] Elmers, H.J.. Hauschild, J.. and Gradinami, V.. Phys. Rev. B 54. 1 (1996).Google Scholar
[12] Gradmann, U.. Ann. Phys. (Leipzig), 7. Folge. 17. 91 (1966).Google Scholar
[13] Bergholz, R. and Gradmann, U.. J. Magn. Magn. Mater. 45, 389 (1981).Google Scholar
[14] Dürkop, T., Elmers, H.J., Weber, N. and Gradinami, U., submitted to J. Magn. Magn. Mater. (1997).Google Scholar
[15] Jensen, C.. Rpshöft, K. and Köhler, U., Appl. Phys. A 62, 217 (1996).Google Scholar
[16] Fritzsche, H.. Eimers, H.J. and Gradmann, U.. J. Magn. Magn. Mater. 135, 313 (1991).Google Scholar
[17] Kneller, E. in Magnetism and Metallurgy, edited by Berkowitz, A.E. and Kneller, E.. Vol. 1. Academic Press. London. 1969. pp. 365471.Google Scholar
[18] Gradmann, U. and Elmers, H.J.. J. Magn. Magn. Mater. 137. 44 (1991).Google Scholar