Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:52:14.557Z Has data issue: false hasContentIssue false

PEM fuel cell electrodes using Single Wall Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Padraig Moloney
Affiliation:
[email protected], NASA Johnson Space Center, NanoMaterials Project, 2101 NASA Parkway, Mailcode ES4, Houston, TX, 77058, United States, 2812445917
Chad Huffman
Affiliation:
[email protected], ERC Inc./NASA Johnson Space Center, NanoMaterials Project, United States
Micah Springer
Affiliation:
[email protected], NASA Johnson Space Center, NanoMaterials Project
Olga Gorelik
Affiliation:
[email protected], ERC Inc./NASA Johnson Space Center, NanoMaterials Project, United States
Pasha Nikolaev
Affiliation:
[email protected], ERC Inc./NASA Johnson Space Center, NanoMaterials Project, United States
Edward Sosa
Affiliation:
[email protected], ERC Inc./NASA Johnson Space Center, NanoMaterials Project, United States
Sivaram Arepalli
Affiliation:
[email protected], ERC Inc./NASA Johnson Space Center, NanoMaterials Project, United States
Leonard Yowell
Affiliation:
[email protected], NASA Johnson Space Center, NanoMaterials Project, United States
Get access

Abstract

Single wall carbon nanotubes (SWCNT) have previously been considered potential catalyst supports in proton exchange membrane fuel cells (PEMFC) [1]. Earlier research and development of SWCNT for PEMFC catalyst supports has been advanced by utilizing differing SWCNT purities and carbon blacks in differing ratios. This study validates the performance of SWCNT and introduces new concepts for SWCNT membrane fabrication.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mehta, V., Smith Cooper, J.; “Review and analysis of PEM fuel cell design and manufacturing.” Journal of Power Sources 114, 3253 (2003).Google Scholar
2. Hone, J., Llaguno, M. C., Nemes, N. M., Johnson, A. T., Fischer, J. E., Walters, D. A., Casavant, M. J., Schmidt, J., Smalley, R. E.; “Electrical And Thermal Transport Properties Of Magnetically Aligned Single Wall Carbon Nanotube Films.” Appl. Phys. Lett. 77, 666668 (2000).Google Scholar
3. Ruf, H.J., Landi, B.J., Raffaelle, R.P. “SWNT Enhanced PEM Fuel Cells.” In Second International Conference on Fuel Cell Science, Engineering and Technology, FuelCell2004–2527 ASMEGoogle Scholar
4. Huffman, C., Moloney, P., Gorelik, O., Nikolaev, P., Arepalli, S., Oryshchyn, L., Yowell, L. Evaluation of Carbon Nanotube Electrode Assemblies for Proton Exchange Membrane Fuel Cells. 2004 MRS Fall Meeting - Program/Symposium MGoogle Scholar
5. Cinke, M., Li, J., Chen, B., Cassell, A., Delzeit, L., Han, J. and Meyyappan, M.; “Pore structure of raw and purified HiPco single-walled carbon nanotubes.” Chemical Physics Letters, 365, (1–2), 6974, (2002).Google Scholar
6. Chen, G., XU, C., Mao, Z., Li, Y., Zhu, J., Ci, L., Wei, B., Liang, J., Wu, D.; “Deposition of the Platinum Crystals on the Carbon Nanotubes.”; Chinese Science Bulletin, 45, (2), 134136, (2000)Google Scholar
7. Moloney, P., Huffman, C., Gorelik, O., Nikolaev, P., Arepalli, S., Allada, R., Springer, M., Yowell, L., MRS Proceedings Materials for Space Applications Volume 851 (Fall 2004)Google Scholar