Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:32:42.793Z Has data issue: false hasContentIssue false

Oxidation Resistance of Ultrathin Silicon Nitride Passivation Layers on Si(100)

Published online by Cambridge University Press:  10 February 2011

A. Kamath
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, Austin, TX 78712
B. Y. Kim
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, Austin, TX 78712
P. M. Blass
Affiliation:
Center for Materials Chemistry, Department of Chemistry and Biochemistry The University of Texas at Austin, Austin, TX 78712
Y. M. Sun
Affiliation:
Center for Materials Chemistry, Department of Chemistry and Biochemistry The University of Texas at Austin, Austin, TX 78712
J. M. White
Affiliation:
Center for Materials Chemistry, Department of Chemistry and Biochemistry The University of Texas at Austin, Austin, TX 78712
D. L. Kwong
Affiliation:
Microelectronics Research Center, Department of Electrical and Computer Engineering, Austin, TX 78712
Get access

Abstract

The oxidation resistance of ultrathin (5–15Å) thermally grown silicon nitride (Si3N4), in conditions relevant to the deposition/annealing of Tantalum Pentoxide (Ta2O5) in a Rapid Thermal Processing (RTP) environment, has been non destructively examined using X-Ray Photoelectron Spectroscopy (XPS). This has been carried out with a view to establishing a process window for the deposition of Ta2O5 on a Rapid Thermally Nitrided (RTN) Si(100) surface, with negligible oxidation of the Si(100) substrate. A physical model of the oxidation process of these films is also proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Devine, R. A. B., Appl. Phys. Lett., 68, 1924 (1996).10.1063/1.115627CrossRefGoogle Scholar
2. Kamiyama, S., Lesaicherre, P.-Y., Suzuki, H., Sakai, A., Nishiyama, I., and Ishitani, A., J. Electrochem Soc., 140, 1617 (1993).10.1149/1.2221612CrossRefGoogle Scholar
3. Ando, K., Ishitani, A., and Hamano, K., Appl. Phys. Lett., 59, 1081 (1991).CrossRefGoogle Scholar
4. Han, L. K., Yoon, G. W., Kwong, D. L., Mathews, V. K., and Fazan, P. C., IEEE Electron Device Lett., EDL–15, 280 (1994).10.1109/55.296216CrossRefGoogle Scholar
5. Kuiper, A. E. T., Willemsen, M. F. C., Mulder, J. M. L., Oude Elferink, J. B., Habraken, F. H. P. M., and van der Weg, W. F., J. Vac. Sci. Technol. B, 7, 455 (1989).10.1116/1.584769CrossRefGoogle Scholar
6. Ogbuji, L. U. T. and Jayne, D. T., J. Electrochem Soc., 140, 759 (1993).CrossRefGoogle Scholar
7. Murarka, S. P., Chang, C. C., and Adams, A. C., J. Electrochem Soc., 126, 996 (1979).10.1149/1.2129223CrossRefGoogle Scholar
8. Kamath, A., Kwong, D. L., Sun, Y. M., Blass, P., Whaley, S., and White, J. M., Appl. Phys. Lett., 70, 63 (1997).10.1063/1.119307CrossRefGoogle Scholar