Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T00:47:02.327Z Has data issue: false hasContentIssue false

The Oxidation of Nickel-Aluminum and Iron-Aluminum Alloys*

Published online by Cambridge University Press:  21 February 2011

John V. Cathcart*
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831
Get access

Abstract

The high-temperature oxidation behavior of several ordered alloys in the Ni-Al and Fe-Al systems is reviewed with special emphasis on Ni3Al and NiAl. Ordering influences oxidation through its effect on the activities of the alloy components and by changing the point defect concentration in an alloy. Three categories of Ni-Al alloys are distinguished based on Al content and oxidation behavior. A characteristic feature of the oxidation of high-aluminum Ni-Al and Fe-Al alloys is the formation of voids in the substrate at the oxide-metal interface. The mechanism of void formation and its suppression by minor additions of oxygen-active elements is discussed. A brief description of the effect of preoxidation on the reactions of Ni3Al-base alloys in SO2/O2 environments is also included.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research sponsored by the Office of Energy Utilization Research, Energy Conversion and Utilization Technologies (ECUT) Program and the Office of Technical Coordination, Advanced Research and Technology Development (AR&TD) Fossil Energy Materials Program, U.S. Department of Energy, under contract DE-ACO5-840R21400 with Martin Marietta Energy Systems, Inc.

References

REFERENCES

1. Hansen, M., Constitution of Binary Alloys, McGraw-Hill, New York, (1958), pp. 118121.Google Scholar
2. Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., Kelley, K. K., Selected Values of the Thermodynamic Properties of Binary Alloys, American Society for Metals, Metals Park, Ohio (1973), pp. 191195.Google Scholar
3. Hancock, G. F. and McDonnell, B. R., Phys. Stat. Sol. (a) 4 (1971), 143150.Google Scholar
4. Swann, P. R., Duff, W. R., and Fisher, R. M., Trans. AIME, 245, (1969), 851853.Google Scholar
5. Okamoto, H. and Beck, P. A., Met. Trans. 2 (1971) 569574.CrossRefGoogle Scholar
6. Oki, K., Sagane, H.. and Eguchi, T., Japan. J. Appl. Phys., 13 (1974) 753761.CrossRefGoogle Scholar
7. Larikov, L. N., Geichenko, V. V., and Fal'chenko, V. M., Diffusion Processes in Ordered Alloys, (translated from the Russian), Oxonian Press Pvt., Ltd., New Delhi (1981) p. 44.Google Scholar
8. Manning, J. R., Diffusion Kinetics for Atoms in Crystals, D. van Nostrand Co. Inc., Princeton, N. J. (1968), p. 189.Google Scholar
9. Singh, P. and Birks, N., Oxidation of Metals 19 (1983) 3752.CrossRefGoogle Scholar
10. Bradley, A. J. and Taylor, A, Proc. Roy. Soc. (London) A159, 5672 (1937).Google Scholar
11. Goward, G. W. and Boone, D. H., Oxidation of Metals, 3 (1971), 475495.Google Scholar
12. Pettit, F. S., Trans. Met. Soc. AIME, 239 (1967) 1296.Google Scholar
13. Wolf, J. S. and Evans, E. B., Corrosion, 18 (1962) 129t.Google Scholar
14. Stott, F. H. and Wood, G. C., Corros. Sci. 17 (1977) 647.Google Scholar
15. Wood, G. C. and Stott, F. H., Br. Corros. J. 6 (1971) 247.Google Scholar
16. Kuenzly, J. D. and Douglass, D. L., Oxid. of Metals 8 (1974) 139.CrossRefGoogle Scholar
17. Smialek, J. L., Met. Trans. A, 9A (1978) 309.Google Scholar
18. Hindam, H. M. and Whittle, D. P., J. Mat. Sci. 18 (1983) 1389.Google Scholar
19. Hindam, H. M. and Smeltzer, W. W., J. Electrochem. Soc. (1980) 1622.Google Scholar
20. Hutchings, R., Loretto, M. H., and Smallman, R. E., Metal Sci. 15 (1981) 7.Google Scholar
21. Hutchings, R. and Loretto, M. H., Metal Sci. 12 (1978) 503.CrossRefGoogle Scholar
22. Panyushin, L. A. and Valyev, V. P., Protection of Metals (English translation) 12 (1976) 211.Google Scholar
23. Shida, Y., Stott, F. H., Bastow, B. D., Whittle, D. P., and Wood, G. C., Oxid. of Metals 18 (1982) 93.Google Scholar
24. Smialek, J. L. and Gibala, R., Met. Trans. A (14A1983) 2143.Google Scholar
25. Stott, F. H., Shida, Y., Whittle, D. P., Wood, G. C., and Bastow, D., Oxid. of Metals 18 (1982) 127.CrossRefGoogle Scholar
26. Tsippas, D. N., Proceedings JIMIS Symposium on High Temperature Corrosion, p. 569Google Scholar
27. Whittle, D. P., Shida, Y., Wood, G. C., Stott, F. H., and Bastow, B. D., Phil. Mag. 46 (1982) 93b.Google Scholar
28. Cathcart, J. V., unpublished research.Google Scholar
29. Kear, B. H., Pettit, F. S., Fornwalt, D. E., and Lamaire, L. P., Oxid. of Metals 3 (1971) 557.CrossRefGoogle Scholar
30. Hindam, H. M. and Smeltzer, W. W., J. Electrochem. Soc. 127 (1980) 1630.Google Scholar
31. Wood, G. C. and Stott, F. A., “Development and Growth of Protective Al2O3 Scales on Alloys” in High Temperature Corrosion, Rapp, R. A., ed., NACE (1983), p. 227.Google Scholar
32. Lillirud, K. P. and Kofstad, P., “High Temperature Oxidation of Chromium”, in High Temperature Corrosion, Rapp, R. A., ed., NACE (1983), p.155.Google Scholar
33. Lillirud, K. P. and Kofstad, P., Oxid. of Metals 17 (1982) 127.Google Scholar
34. Hindam, H. M. and Smeltzer, W. W., Oxid. of Metals 14 (1980) 337.CrossRefGoogle Scholar
35. Reddy, K. P. R., Smialek, J. L., and Cooper, A. R., Oxid. of Metals 17 (1982) 429.Google Scholar
36. Tien, J. K. and Wood, W. H., Scripta Met. 6 (1972) 55.CrossRefGoogle Scholar
37. Stringer, J., Met. Rev. 11 (1966) 113.CrossRefGoogle Scholar
38. Tsuzi, E., Met. Trans. A, 11A (1980.) 1965.Google Scholar
39. Felton, E. J., J. Electrochem. Soc. 108 (1961) 490.Google Scholar
40. Tien, J. K. and Pettit, F. S., Met. Trans. 3 (1972) 1587.Google Scholar
41. Pfeiffer, H., Werkst. Korros. 8 (1957) 574.Google Scholar
42. Francis, J. M. and Jutson, J. A., Corros. Sci. 8 (1968) 445.Google Scholar
43. Kofstad, P., “High Temperature Corrosion”, John Wiley and Sons, to be published.Google Scholar
44. Stringer, J., Wilcox, B. A., and Jaffe, R. I., Oxid. of Metals 5 (1972) 11.Google Scholar
45. Stringer, J., Hed, A. Z., Wallwork, G. R., and Wilcox, B. A., Corros. Sci. 12 (1972) 625.CrossRefGoogle Scholar
46. Tomaszewicz, P. and Wallwork, G. R., Rev. High Temperature Materials, 4 (1978) 75.Google Scholar
47. Tomaszewicz, P. and Wallwork, G. R., Oxid. of Metals 19 (1983) 165.CrossRefGoogle Scholar
48. Hardwick, D. and Wallwork, G. R., Reviews of High Temperature Materials, 4 (1978) 47.Google Scholar
49. Clark, P. R., Packer, C. M., and Perkins, R. A., “Development of Coatings for Corrosion/Erosion Protection of Internal Components of Coal Gasification Vessels,” Vol I. Laser Fused MCrAl, FE-2592-29, March 1981.Google Scholar
50. Perkins, R.A, Clark, P. R., and Packer, C. M., “Development of Coatings for Corrosion/Erosion Protection of Internal Components of Coal Gasification Vessels,”, Vol II. Furnace Fused MCrAl Coatings, FE-2592-30, March 1981.Google Scholar
51. A Steiner and Komarek, K. L., Trans. Met. Soc. AIME, 230 (1964) 786.Google Scholar