Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T04:34:30.399Z Has data issue: false hasContentIssue false

Oxidation Kinetics of Cu-Ni Alloy Observed by in situ UHV-TEM

Published online by Cambridge University Press:  01 February 2011

Li Sun
Affiliation:
[email protected], University of Pittsburgh, Mechanical Engineering and Materials Science, 848 Benedum Hall, 3700 O'Hara street, Pittsburgh, PA, 15261, United States
John E. Pearson
Affiliation:
[email protected], Argonne National Laboratory, Argonne, IL, 60439, United States
Judith C. Yang
Affiliation:
[email protected], University of Pittsburgh, Pittsburgh, PA, 15261, United States
Get access

Abstract

The nucleation and growth of Cu2O and NiO islands due to oxidation of Cu-24%Ni(001) films were monitored at various temperatures by in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM). In remarkable contrast to our previous observations of Cu and Cu-Au oxidation, irregular-shaped polycrystalline oxide islands were observed to form with respect to the Cu-Ni alloy film, and an unusual second oxide nucleation stage was noted. Similar to Cu oxidation, the cross-sectional area growth rate of the oxide island is linear indicating oxygen surface diffusion is the primary mechanism of oxide growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wagner, C., Journal of the Electrochemical Society, 99, 369 (1952).10.1149/1.2779605Google Scholar
2. Aggarwal, S., Monga, A.P., Perusse, S.R., Ramesh, R., Ballarotto, V., Williams, E.D., Chalamala, B.R., Wei, Y., and Reuss, R.H., Science,. 287, 2235 (2000)10.1126/science.287.5461.2235Google Scholar
3. Holloway, P.H., Hudson, J.B., Surface Science, 43, 141 (1974).10.1016/0039-6028(74)90224-6Google Scholar
4. Thurmer, K., Williams, E., and Reutt-Robey, J., Science, 297, 2033 (2002).10.1126/science.297.5589.2033Google Scholar
5. Zhou, G.W., Yang, J.C., Phys. Rev. Lett., 89, 106101–1 (2002).Google Scholar
6. Zhou, G.W., Ph.D thesis. University of Pittsburgh, 2003. (http://etd.library.pitt.edu/ETD/available/etd-11112003-191721/unrestricted/Zhou-ETD-10.pdf)Google Scholar
7. McDonald, M.L., Gibson, J.M., Rev. Sci. Instrum., 60, 700 (1989).10.1063/1.1141004Google Scholar
8. Wang, L., Zhou, G. W., Eastman, J., Yang, J.C., Surface Science, 600, 2372 (2006).10.1016/j.susc.2006.03.044Google Scholar
9. Hono, K., Iwata, T., Nakamura, M., Pickering, H. W., Kamiya, I., Sakurai, T., Surface Science, 245, 132 (1991).10.1016/0039-6028(91)90474-7Google Scholar
10. Haugsrud, R., Kofstad, P., Oxidation of Metals, 50, 189 (1998).10.1023/A:1018884120304Google Scholar
11. Haugsrud, R., Oxidation of Metals, 52, 427 (1999).10.1023/A:1018860015645Google Scholar
12. Haugsrud, R., Oxidation of Metals, 42, 383 (2000).Google Scholar
13. Haugsrud, R., Oxidation of Metals, 55, 571 (2001).Google Scholar
14 Heinemann, K., Rao, D. Bhogeswara, Douglass, D.L., Oxidatin of Metals, 11, 321 (1977).Google Scholar
15. Wood, G.C., Oxidation of Metals, 2, 11 (1970).10.1007/BF00603581Google Scholar
16. Yang, J.C., Yeadon, M., Kolasa, B. and Gibson, J.M., Scripta Materialia, 38, 1237 (1998).10.1016/S1359-6462(98)00026-8Google Scholar