Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-06T09:49:13.921Z Has data issue: false hasContentIssue false

Organic Semiconductor Thin Films Deposited by Resonant Infrared Matrix-Assisted Pulsed Laser Evaporation: A Fundamental Study of the Emulsion Target

Published online by Cambridge University Press:  30 December 2014

Yuankai Liu
Affiliation:
Department of Electrical and Computer Engineering, Duke University, Durham NC 27708, U.S.A. NSF Research Triangle Materials Research Science & Engineering Center, Duke University, Durham, NC 27708, U.S.A.
Ayomide Atewologun
Affiliation:
Department of Electrical and Computer Engineering, Duke University, Durham NC 27708, U.S.A. NSF Research Triangle Materials Research Science & Engineering Center, Duke University, Durham, NC 27708, U.S.A.
Adrienne D. Stiff-Roberts*
Affiliation:
Department of Electrical and Computer Engineering, Duke University, Durham NC 27708, U.S.A. NSF Research Triangle Materials Research Science & Engineering Center, Duke University, Durham, NC 27708, U.S.A.
*
Get access

Abstract

Poly (3-hexylthiophene) (P3HT) thin films were deposited using emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) from emulsions containing different solvents and different alcohols, to investigate the impact of emulsion on film morphology. The atomic force microscopy (AFM) and grazing-incidence, wide angle x-ray scattering (GIWAXS) results show that surface morphology of RIR-MAPLE as-deposited films can be varied from rough to smooth and the microcrystalline domain orientations with respect to the substrate can be tuned from randomly oriented to preferentially oriented in the vertical direction. The demonstrated ability to tune the structural characteristics of polymer thin films by controlling the target emulsion is important for the application of organic optoelectronic devices deposited by RIR-MAPLE.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Piqué, A., McGill, R. A., Chrisey, D. B., Leonhardt, D., Mslna, T. E., Spargo, B. J., Callahan, J. H., Vachet, R. W., Chung, R., and Bucaro, M. A.: Growth of organic thin films by the matrix assisted pulsed laser evaporation (MAPLE) technique. Thin Solid Films. 355, 536 (1999).CrossRefGoogle Scholar
Pate, R., Lantz, K. R., Dhawan, A., Vo-Dinh, T., and Stiff-Roberts, A. D.: Resonant infrared matrix-assisted pulsed laser evaporation of inorganic nanoparticles and organic/inorganic hybrid nanocomposites. AIP Conf. Proc. 1278, 813 (2010).Google Scholar
Pate, R. and Stiff-Roberts, A. D.: The impact of laser-target absorption depth on the surface and internal morphology of matrix-assisted pulsed laser evaporated conjugated polymer thin films. Chem. Phys. Lett. 477, 406 (2009).CrossRefGoogle Scholar
Pate, R., Lantz, K.R., and Stiff-Roberts, A. D.: Resonant infrared matrix-assisted pulsed laser evaporation of CdSe colloidal quantum dot/poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-(1-cyano vinylene) phenylene] hybrid nanocomposite thin films. Thin Solid Films. 517, 6798 (2009).CrossRefGoogle Scholar
Pate, R., McCormick, R. D., Chen, L., Zhou, W., and Stiff-Roberts, A.D.: RIR-MAPLE deposition of conjugated polymers for application to optoelectronic devices. Appl. Phys. A. 105, 555 (2011).CrossRefGoogle Scholar
McCormick, R. D., Cline, E. D., Chadha, A. S., Zhou, W., and Stiff-Roberts, A. D.: Tuning the refractive index of homopolymer blends by controlling nanoscale domain size via RIR-MAPLE deposition. Macromol. Chem. Phys. 214, 2643 (2013).CrossRefGoogle Scholar
Bubb, D.M., Papantonakis, M., Collins, B. and Brookes, E.: The influence of solvent parameters upon the surface roughness of matrix assisted laser deposited thin polymer films. Chem. Phys. Lett. 448, 194 (2007).CrossRefGoogle Scholar
Mercado, A. L., Allmond, C. E., and Fitzgerald, J. M.: Pulsed laser deposition vs. matrix assisted pulsed laser evaporation for growth of biodegradable polymer thin films. Appl. Phys. A. 81, 591 (2004).CrossRefGoogle Scholar
Kawano, K., Pacios, R., Poplavskyy, D., Nelson, J., Bradley, D. D.C., and James, R. Durrant: Degradation of organic solar cells due to air exposure. Sol. Energ. Mat. Sol. Cells. 90, 3520 (2006).CrossRefGoogle Scholar
Hansen, C. M.: Hansen solubility parameters: a user's handbook, 2nd ed. (CRC Press, New York, 2007) p. 8.CrossRefGoogle Scholar
Sirringhaus, H., Brown, P. J., Friend, R. H., Nielsen, M. M., Bechgaard, K. and de Leeuw, D. M.: Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature. 401, 685 (1999).CrossRefGoogle Scholar
Vanlaeke, P., Swinnen, A., Haeldermans, I., Vanhoyland, G., Aernouts, T., Cheyns, D., Deibel, C., DHaen, J., Heremans, P., Poortmans, J., and Manca, J. V.: P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics. Sol. Energ. Mat. Sol. Cells. 90, 2150 (2006).CrossRefGoogle Scholar
Muller-Buschbaum, P.: The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Adv Mater. 26, 7692 (2014).CrossRefGoogle ScholarPubMed
Cho, E., Risko, C., Kim, D., Gysel, R., Miller, N. C., Breiby, D. W., McGehee, M. D., Toney, M. F., Kline, R. J., and Bredas, J.: Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal. J. Am. Chem. Soc. 134, 6177 (2012).CrossRefGoogle Scholar
Gurau, M. C., Delongchamp, D. M., Vogel, B. M., Lin, E. K., Fischer, D. A., Sambasivan, S., and Richter, L. J.: Measuring molecular order in poly (3-alkylthiophene) thin films with polarizing spectroscopies. Langmuir. 23, 834 (2007).CrossRefGoogle ScholarPubMed