Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T03:30:55.833Z Has data issue: false hasContentIssue false

Ordered and Parallel Niobium Oxide Nano-Tubes Fabricated using Atomic Layer Deposition in Anodic Alumina Templates

Published online by Cambridge University Press:  26 February 2011

Mårten Rooth
Affiliation:
[email protected], Uppsala University, Dep. of Materials Chemistry, Sweden
Anders Johansson
Affiliation:
[email protected], Uppsala University, Dep. of Materials Chemistry, Sweden
Mats Boman
Affiliation:
[email protected], Uppsala University, Dep. of Materials Chemistry, Sweden
Anders Hårsta
Affiliation:
[email protected], Uppsala University, Dep. of Materials Chemistry, Sweden
Get access

Abstract

Amorphous niobium oxide (Nb2O5) nano-tubes were fabricated inside anodic alumina templates using atomic layer deposition (ALD). The nanoporous templates were in-house fabricated anodic alumina membranes having an inter-pore distance of about 100 nm with pores lengths of 2 µm. The pores were parallel and well ordered in a hexagonal pattern. Atomic layer deposition was performed using gas pulses of niobium iodide (NbI5) and oxygen separated by purging pulses of argon. By employing long gas pulses (30 s) it was possible to get coherent and amorphous Nb2O5 films conformally covering the pore-walls of the alumina template. The outer diameter of the nano-tubes was tailored between 40 and 80 nm by using alumina templates with different pore sizes. By using template membranes with pores not opened in the bottom, nano-tubes with one side closed could be fabricated. Free-standing, and still parallel, nano-tubes could be obtained by selectively etching away the alumina template using phosphoric acid. Using the above mentioned procedure it was possible to fabricate unsurpassed parallel niobium oxide nano-tubes of equal length, diameter and wall-thickness, ordered in a perfect hexagonal pattern. The samples were analysed using high resolution scanning electron microscopy (HR-SEM), transmission electron microscopy (TEM), electron diffraction and x-ray fluorescence spectroscopy (XRFS).

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Iijima, S., Nature 354, 56 (1991)Google Scholar
2 Remškar, M. and Mrzel, A., Vacuum 71, 177 (2003)Google Scholar
3 Qu, L., Shi, Q., Wu, X. and Fan, B., Adv. Mater. 16, 1200 (2004)Google Scholar
4 Johansson, A., Widenkvist, E., Lu, J., Boman, M. and Jansson, U., Nano Lett. 5, 1603 (2005)Google Scholar
5 Wu, G. S., Lin, Y., Yuan, X. Y., Xie, T., Cheng, B. C. and Zhang, L. D., Nanotechnology 15, 568 (2004)Google Scholar
6 Shin, H., Jeong, D. K., Lee, J., Sung, M. M. and Kim, J., Adv. Mater 16, 1197 (2004)Google Scholar
7 Özer, N., Rubin, M. D. and Lampert, C. M., Sol. Energy Mater. Sol. Cells 40, 285 (1996)Google Scholar
8 Ushikubo, T., Catal. Today, 57, 331 (2000)Google Scholar
9 Barkhordarian, G., Klassen, T. and Bormann, R., Scripta Mater. 49, 213 (2003)Google Scholar
10 Shirakashi, J., Matsumoto, K., Miura, N. and Konagai, M., Jpn. J. Appl. Phys. 36, L1120 (1997)Google Scholar
11 Van Glabbeek, J. J. and Van de Leest, R. E., Thin Solid Films 201, 137 (1991)Google Scholar
12 Lampert, C. M., Sol. Energy Mater. 11, 1 (1984)Google Scholar
13 Rosenfeld, D., Schmid, P. E., Szeles, S., Levy, F., Demarne, V. and Grisel, A., Sens. Actuators B 37, 83 (1996)Google Scholar
14 Hunsche, B., Vergöhl, M., Neuhäuser, H., Klose, F., Szyszka, B. and Matthee, T., Thin Solid Films 392, 184 (2001)Google Scholar
15 Fu, Z.-W., Kong, J.-J. and Qin, Q.-Z., J. Electrochem. Soc. 146, 3914 (1999)Google Scholar
16 Romero, R., Ramos-Barrado, J. R., Martin, F. and Leinen, D., Surf. Interface Anal. 36, 888 (2004)Google Scholar
17 Schmitt, M., Heusing, S., Aegerter, M. A., Pawlicka, A. and Avellaneda, C., Sol. Energy Mater. Sol. Cells 54, 9 (1998)Google Scholar
18 Jung, S.-C., Imaishi, N. and Park, H.-C., Jpn. J. Appl. Phys. 34, L775 (1995)Google Scholar
19 Williams, P. A., Jones, A. G., Wright, P. J., Crosbie, M. J., Bickley, J. F., Steiner, A., Davies, H. O. and Leedham, T. J., Chem. Vap. Deposition 8, 110 (2002)Google Scholar
20 Kukli, K., Ritala, M., Leskelä, M. and Lappalainen, R., Chem. Vap. Deposition 4, 29 (2002)Google Scholar
21 Rooth, M., Kukli, K. and Hårsta, A., in EUROCVD 15, Proc. Vol. 2005-09, Eds.: Devi, A., Fischer, R., Parala, H., Allendorf, M. and Hitchman, M. (The Electrochem. Soc., Pennington, N. J. 2005) p. 598.Google Scholar
22 Masuda, H. and Fukuda, K., Science 268, 1466 (1995)Google Scholar
23 Sundqvist, J., Hårsta, A., Aarik, J., Kukli, K. and Aidla, A., Thin Solid Films 427, 147 (2003)Google Scholar