Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T09:04:40.179Z Has data issue: false hasContentIssue false

Optical Properties of Hydrogenated Amorphous Carbon Films Grown From Methane Plasma

Published online by Cambridge University Press:  22 February 2011

J. J. Pouch
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio 44135
S. A. Alterovitz
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio 44135
J. D. Warner
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio 44135
D. C. Liu
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio 44135
W. A. Lanford
Affiliation:
State University of New York at Albany, Albany, New York, 12222
Get access

Abstract

We have used a 30 kHz ac glow discharge formed from methane gas to grow carbon films on InP substrates. Both the growth rate, and the relative Ar ion sputtering rate at 3 keV varied monotonically with deposition power. The Ar ion etchigg rate of the films decreased with deposition power. Results from the 15N nuclear reaction profile experiments indicated a slight drop in the hyorogen concentration as more energy was dissipated in the ac discharge. Values for the inoex of refraction and extinction coefficient ranged from 1.721 to 1.910 and 0 to -0.188, respectively. Optical bandgaps as high as 2.34 eV were determined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Aisenberg, S. A., and Chabot, R., J.Appl. Phys. 42, 29532 (1971).CrossRefGoogle Scholar
2 Banks, B. A., and Rutledge, S. K., J. Vac. Sci. Technol., 21, 807. (1982)CrossRefGoogle Scholar
3 Khan, A.A., Woollam, J.A., Chung, Y., and Banks, B.A., IEff-Elect. Dev. etts., EDL-4, 146 (1983).CrossRefGoogle Scholar
4 Moravec, T. J., and Orent, T. W.,. J. Vac. Sci. Technol., 18, 226, (1981)CrossRefGoogle Scholar
5 Weissmantel, C.W. Reisse, G. W., Erler, H. J.. Henny, F., Bewilogua U Ebersback, K., and Shurer, C., Thin Solid Films, 63, 315 (1979).CrossRefGoogle Scholar
6 Mathine, D., Dillon, R.O., Khan, A.A., Bu-Abbud, G., Woollam, J.A., Liu, D.C., Banks, B.A., and Domitz, S., J. Vac. Sci. Technol., A 2, 365 (1984).CrossRefGoogle Scholar
7 Dillon, R. O., Woolam, J. A., and Katkanant, V., Phys. Rev., B 29, 3482 (1984)CrossRefGoogle Scholar
8 Warner, J. D., Pouch, J. J., Alterovitz, S. A., Lsu, D. C. and Lanford, W. B. acceptea for publication in J. Vac. Sci. Technol., A3, (1985).Google Scholar
9 Lanford, W. A., and Rand, M. J., J. Appl. Phys., 49, 2473, (1978).CrossRefGoogle Scholar
10 Bu-Abbud, G., Alterovitz, S. A., Bashara, N.M., and Woollam, J. A., J. Vac. Sci. Technol., Al, 619 (1983).CrossRefGoogle Scholar
11 Mott, N.F., and Davis, E.A., ”Electrons Processes in Noncrystalline Materials,” Clarendon Press, Oxford, 197 (1971).Google Scholar
12 Bu-Abbud, G., Woollam, J. A., and Lamb, J. D., Bull. Am. Phys. Soc., 30, 211 (1985).Google Scholar