Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-17T21:32:37.848Z Has data issue: false hasContentIssue false

On the Existence of (O2)2- in YBa2Cu3-yMyO7+x, M=Co and Fe

Published online by Cambridge University Press:  28 February 2011

Y. K. Tao
Affiliation:
Center for Materials Science and Engineering, ETC 9.104, The University of Texas, Austin, Texas 78712
J. S. Swinnea
Affiliation:
Center for Materials Science and Engineering, ETC 9.104, The University of Texas, Austin, Texas 78712
A. Manthiram
Affiliation:
Center for Materials Science and Engineering, ETC 9.104, The University of Texas, Austin, Texas 78712
J. S. Kim
Affiliation:
Center for Materials Science and Engineering, ETC 9.104, The University of Texas, Austin, Texas 78712
J. B. Goodenough
Affiliation:
Center for Materials Science and Engineering, ETC 9.104, The University of Texas, Austin, Texas 78712
H. Steinfink
Affiliation:
Center for Materials Science and Engineering, ETC 9.104, The University of Texas, Austin, Texas 78712
Get access

Abstract

The limiting substitution of Co or Fe for Cu in the orthorhombic superconducting phase YBa2Cu3O7−x yields the tetragonal, semiconducting compositions YBa2Cu2CoO7.25 and YBa2Cu2.5Fe0.5O7.19 after annealing at 400°C and slow-cooling in O2. Single-crystal x-ray structural analyses, conductivity and magnetic-susceptibility measurements, and TGA data provide evidence for Co or Fe substitution at the Cu(1) position and intercalation of peroxide ions (O2)2-. The two compositions decompose for disintercala-tion of oxygen beyond O6.7 for M=Co and O6.4 for M=Fe when heated in N2. The Cu(2) atoms of tetragonal YBa2Cu3O6 appear to be antiferromagnetic below a TN = 240 K, which is similar to comparable Cu-O planar nets in stoichiometric La2LnO4.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Beno, M.A., Soderholm, L., Capone, D.W., Hinks, D.G., Jorgensen, J.D., Schuller, I.K., Segre, C.V., Zhang, K. and Grace, J.D., App. Phys. Lett. 51, 57 (1987).Google Scholar
2. Beech, F., Miraglia, S., Santoro, A. and Roth, R.S., Phys. Rev. B 35, 8778 (1987).Google Scholar
3. Schuller, I.K., Hinks, D.G., Beno, M.A., Capone, D.W., Soderholm, L., Locquet, J.-P., Bruynseraede, Y., Segre, C.U. and Zhang, K., Solid St. Communic., 63, 385 (1987).Google Scholar
4. Manthiram, A., Swinnea, J.S., Sui, Z.T., Steinfink, H. and Goodenough, J.B., J. Am. Chem. Soc. (1987), in press.Google Scholar
5. Goodenough, J.B., Mat. Res. Bull. (1987), in press.Google Scholar
6. Tarascon, J.M., Greene, L.H., Bagley, B.G., McKinnon, W.R., Barboux, P. and Hull, G.W., Proceedings International Workshop on Novel Mechanisms of Superconductivity, Berkeley, C.A., Kresin, V., ed. (Plenum Press, New York 1987), in press.Google Scholar
Maeno, Y. and Fujita, T., Proceedings International Workshop on Novel Mechanismsof Superconductivity, Berkeley, C.A., Kresin, V., ed. (Plenum Press, New York 1987), in press.Google Scholar
7. Xiao, G., Streitz, F. H., Gavrin, A., Du, Y.W. and Chien, C.L., Phys. Rev. B 35, 8782 (1987).Google Scholar
8. Tao, Y.K., Swinnea, J.S., Manthiram, A., Kim, J.S., Goodenough, J.B. and Steinfink, H., J. Mat. Res. (1987), in press.Google Scholar
9. Swinnea, J.S. and Steinfink, H., J. Mater. Res. 2, 424 (1987).Google Scholar
10. Sarma, D.D., Sreedhar, K., Ganguly, P. and Rao, C.N.R., Phys. Rev. B 36, 2371 (1987).Google Scholar