Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-15T22:17:14.787Z Has data issue: false hasContentIssue false

NIIN As an Ohmic Contact to P-GAN

Published online by Cambridge University Press:  15 February 2011

D. B. Ingerly
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706-1595
Y. A. Chang
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706-1595
Y. Chen
Affiliation:
Hewlett-Packard Company, 3500 Deer Creek Road, Palo Alto, California 94304-1392
Get access

Abstract

Based on the criteria for the solid state exchange reaction with p-GaN, we have investigated the intermetallic compound Niln as a possible ohmic contact. The contacts were fabricated by depositing Niln on p-GaN films (p ∼ 2 × 1017 cm-3) using RF sputtering from a compound target. The as-deposited, Niun contacts were found to be rectifying and using I-V characterization a Schottky barrier height of 0.82 eV was measured. Rapid thermal annealing of the contacts was shown to significantly decrease their resistance, with contacts annealed at 800°C for I min yielding the lowest resistance. When annealed at 800°C for 1 min Niln contacts exhibited a specific contact resistance of 8-9 × 10-3 Ωcm2, as measured by the circular transmission line model. To allow a more universal comparison the more traditional Ni/Au contacts, processed under the same conditions, were used as a standard. Their measured specific contact resistance (ρc = 1.2 - 2.1 x 10-2 Ωcm2) was significantly higher than that of the Niln contacts. Demonstrating that Niln has promise as an ohmic contact to p-GaN and should be studied in greater detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Bums, M., J. Appl. Phys. 76(3), 1363 (1994).Google Scholar
2. Morkoc, H. and Mohammad, S. N., Science 267, 51 (1995).Google Scholar
3. Pearton, S. J. and Kuo, C., MRS Bulletin 22, 17 (1997).Google Scholar
4. Mori, T., Kozawa, T., Ohwaki, T., Taga, Y., Nagai, S., Yamasaki, S., Asami, S., Shibata, N. and Koike, M., Appl. Phys. Lett. 69(23), 3537 (1996).Google Scholar
5. Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, S., Jpn. J. Appl. Phys. 34, L797 (1995).Google Scholar
6. Trexler, J. T., Miller, S. J, Holloway, P. H. and Khan, M. A., Mater. Res. Soc. Sympo. Proc. 395, 819 (1996).Google Scholar
7. Kim, T., Yoo, M. C., and Kim, T., Mater. Res. Soc. Symp. Proc. 449, 1061 (1997).Google Scholar
8. King, D. J., Zhang, L., Ramer, J. C., Hersee, S. D., Lester, L. F., Mater. Res. Soc. Symp. Proc. 468, 421 (1997).Google Scholar
9. Smith, L. L., Davis, R. F., Kim, M. J., Carpenter, R. W. and Huang, Y., J. Mater. Res. 12, 2249 (1997).Google Scholar
10. Trexler, J. T., Pearton, S. J., Holloway, P. H., Mier, M. G., Evans, K. R., and Karlicek, R. F., Mater. Res. Soc. Symp. Proc. 449, 1091 (1997).Google Scholar
11. Soon, J.-S., Kim, H.-G., Park, K.-H., Um, C.-S., Han, I.-L., Kim, S.-H., Jang, H.-K., Park, S.-J., Mater. Res. Soc. Symp. Proc. 482, 1053 (1998).Google Scholar
12. Nakamura, S., Mater. Res. Soc. Symp. Proc. 482, 1145 (1998).Google Scholar
13. Venugopalan, H.S., Mohney, S.E., Luther, B. P., DeLucca, J. M., Wolter, S. D., Redwing, J. M., and Bulman, G. E., Mater. Res. Soc. Symp. Proc. 468, 431 (1997).Google Scholar
14. Lin, C.-F., Chang, Y. A., Pan, N., Huang, J.-W., and Kuech, T.-F., Appl. Phys. Lett. 67, 3587 (1995).Google Scholar
15. Chen, D. Y., Chang, Y. A. and Swenson, D., Appl. Phys. Lett. 68, 96 (1996).Google Scholar
16. Chen, D.Y., Chang, Y. A. and Swenson, D., J. Appl. Phys. 81, 297 (1997).Google Scholar
17. Chen, D. Y., Ph. D. Thesis, University of Wisconsin, Madison, WI (1997).Google Scholar
18. Swenson, D., Jan, C.-H., Chang, Y. A., J. Appl. Phys. 84, (1998).Google Scholar
19. Okamoto, H., in Massalski, T. B. (ed.), Binary Alloy Phase Diagrams, ASM International, Materials Park, OH, 2276 (1990) 2nd edn.Google Scholar
20. Marlow, G. S. and Das, M. B., Solid-State Electronics 25, 91 (1982)Google Scholar
21. Schroder, D. K., Semiconductor Material and Device Characterization, John Wiley and Sons, Inc, New York, NY, 151 (1990)Google Scholar
22. Ishikawa, H., Kobayashi, S., Koide, Y., Yamasaki, S., Nagai, S., Umezaki, J., Koike, M., and Murakami, M., J. Appl. Phys. 81(3), 1315 (1997).Google Scholar
23. Tung, R.T., J. Vac. Sci. Technol. B 11(4), 1546 (1993).Google Scholar