Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:02:52.275Z Has data issue: false hasContentIssue false

Near Infrared Light Detectors Based on Uhvcvd Epitaxial Ge on Si (100)

Published online by Cambridge University Press:  10 February 2011

L. Colace
Affiliation:
Dipartimento di Ingegneria Elettronica, University of Rome TRE Via della Vasca Navale, 84 -1-00146- Rome - Italy
G. Masini
Affiliation:
Dipartimento di Ingegneria Elettronica, University of Rome TRE Via della Vasca Navale, 84 -1-00146- Rome - Italy
F. Galluzzi
Affiliation:
Dipartimento di Ingegneria Elettronica, University of Rome TRE Via della Vasca Navale, 84 -1-00146- Rome - Italy
G. Assanto
Affiliation:
Dipartimento di Ingegneria Elettronica, University of Rome TRE Via della Vasca Navale, 84 -1-00146- Rome - Italy
G. Capellini
Affiliation:
Unità INFM, Dipartimento di Fisica “E. Amaldi” University of Rome TRE Via della Vasca Navale, 84 -1-00146- Rome - Italy
L. Di Gaspare
Affiliation:
Unità INFM, Dipartimento di Fisica “E. Amaldi” University of Rome TRE Via della Vasca Navale, 84 -1-00146- Rome - Italy
E. Palange
Affiliation:
Unità INFM, Dipartimento di Fisica “E. Amaldi” University of Rome TRE Via della Vasca Navale, 84 -1-00146- Rome - Italy
F. Evangelisti
Affiliation:
Unità INFM, Dipartimento di Fisica “E. Amaldi” University of Rome TRE Via della Vasca Navale, 84 -1-00146- Rome - Italy
Get access

Abstract

In the present work we investigate photo-detectors based on thick relaxed Ge layers, epitaxially grown on silicon after insertion of a low-temperature-grown Ge buffer layer. By using this procedure it was possible to grow films having thicknesses comparable with light penetration depth in the 1.3–1.6μm spectral range. The films exhibited flatness on the atomic scale. Two kinds of detectors were investigated: vertical heterojunction diodes and a planar Metal-Semiconductor-Metal structure. The detectors show a good responsivity at normal incidence at both 1.3 and 1.55μm. The photocurrent increases with the voltage applied, reaching a maximum responsivity of 0.24 A/W at 1.3μm under a bias of IV. A complete optoelectronic characterization of the fabricated devices is performed. The results confirm the feasibility of the proposed approach for the fabrication of 1.3–1.55μm near infrared photodetectors integrated on silicon chips.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Herrscher, M., Grundmann, M., Droge, E., Kollakowski, S., Bottcher, E.H., Bimberg, D., Electronics Lett. 31, 1383, 1995.Google Scholar
2 Huang, F.Y., Zhu, X., Tanner, M.O., Wang, K.L., Appl.Phys.Lett. 67, 566, 1995.Google Scholar
3 Temkin, H., Pearsall, T.P., Bean, J.C., Logan, R.A. and Luryi, S., Appl. Phys. Lett., 48, 963 (1986) and T. P. Pearsall, E. A. Beam, H. Temkin, J. C. Bean, Electronic Letters, 24, 685 (1988).Google Scholar
4 Presting, H., Kibbel, H., Thin Solid Films, 222, 215, 1992.Google Scholar
5 Luryi, S., Kastalsky, A., Bean, J.C., IEEE Trans. on Electron Devices, 31, 1135, 1984.Google Scholar
6 Eaglesham, D. J., Unterwald, F.C., and Jacobson, D.C., Phys. Rev. Lett., 70, 966 (1993).Google Scholar
7 DiGaspare, L., Capellini, G., Chudoba, C., Sebastiani, M., and Evangelisti, F., Appl. Surf. Sci., 104–105, 595, (1996) and S. M. Sze, Physics of Semiconductor Devices, Wiley & Sons, New York p. 270, (1981)Google Scholar
8 Donnelly, J.P., Milnes, A.G., Solid State Electron. 9, 174, (1965).Google Scholar
9 Chu, V., Conde, J.P., Shen, D.S., Wagner, S., Appl. Phys. Lett. 68, 1084, (1996)Google Scholar
10 Neuberger, M., Handbook of electronic materials, IFI/Plenum 1971 Google Scholar