Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T02:38:01.017Z Has data issue: false hasContentIssue false

The Nature and Characterization of Nanoparticles

Published online by Cambridge University Press:  31 January 2011

Rajiv Kohli*
Affiliation:
[email protected], The Aerospace Corporation, 2525 Bay Area Blvd, Ste 600, Houston, Texas, 77058-1558, United States
Get access

Abstract

Nanosize particles are of fundamental and practical interest for developing advanced materials and devices and micro and nanostructures. As feature sizes shrink, nanoparticle contamination is also becoming increasingly important to achieve and maintain high product yields. In order to employ appropriate material and product development strategies, or institute preventive assembly and remediation strategies to control nanoparticle contamination, it is essential to understand the nature of nanoparticles and to characterize these particles. Particles in the size range 0.1 nm to 100 nm present unique challenges and opportunities for their imaging and characterization. Critical information for this purpose is the number and size of the particles, their morphology, and their physical and chemical structure. Because of this importance, many advances and new developments have been made in qualitative and quantitative characterization techniques for particles in this size range, including neutron holography, three dimensional atom probe imaging, ultrafast microscopy and crystallography, magnetic resonance force microscopy, and high-resolution x-ray crystallography of non-crystalline structures. It is now possible to completely characterize nanoparticles from 0.1 nm to 100 nm size. A brief review of the nature of nanoparticles is presented and recent developments in selected characterization techniques are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.NIST Advanced Measurement Laboratory, Fact Sheet, http://www.nist.gov/public affairs/amlbrochure.htm (2009).Google Scholar
2. Levin, I. and Vanderah, T., J. Res. Natl. Inst. Stand. Technol. 113, 321 (2008).Google Scholar
3. Aert, S. Van, Dekker, A. J. den, and Dyck, D. Van, Micron. 35, 425 (2004).Google Scholar
4. Aert, S. Van, Dyck, D. Van, and den, A. J. Dekker, Opt. Express 14, 3830 (2006).Google Scholar
5. Urban, K. W., Nature Mater. 8, 260 (2009).Google Scholar
6. Houben, L., Thust, A., and Urban, K. W., Ultramicroscopy 106, 200 (2006).Google Scholar
7. Bals, S., Aert, S. Van, Tendeloo, G. Van, and Ávila-Brande, D. Phys. Rev. Lett. 96, 096106 (2006).Google Scholar
8. Jia, C. L., Mi, S. B., Urban, K. W., Vrejoiu, I., Alexe, M., and Hesse, D., Nature Mater. 7, 57 (2008).Google Scholar
9. Garbini, J. L. and Sidles, J. A., Program for Achieving Single Nuclear Spin Detection, White Paper-1, Version 2.0c, Quantum System Engineering Group, University of Washington, Seattle, WA (2005).Google Scholar
10. Rugar, D., Budakian, R., Mamin, H. J., and Chul, B. W., Nature 430, 329 (2004).Google Scholar
11. Degen, C. L., Poggio, M., Mamin, H. J., Rettner, C. T., and Rugar, D., Proc. Natl. Acad. Sci. USA 106, 1313 (2009).Google Scholar
12. Muller, D. A, Nakagawa, N., Ohtomo, A., Grazul, J. L., and Hwang, H. Y., Nature 430, 657 (2004).Google Scholar
13. Kohli, R., in Particles on Surfaces 9: Detection, Adhesion and Removal, edited by Mittal, K. L., VSP, Utrecht, 2006) p. 3.Google Scholar
14. Zewail, A. H., Annu. Rev. Phys. Chem. 57, 65 (2006).Google Scholar
15. Kohli, R., in Particles on Surfaces 8: Detection, Adhesion and Removal, edited by Mittal, K. L., VSP, Utrecht, 2003) p. 3.Google Scholar
16. Krexner, G. (private communication).Google Scholar
17. Preining, O., in Developments in Surface Contamination and Cleaning. Fundamentals and Applied Aspects, edited by Kohli, R. and Mittal, K. L. (William Andrew, Norwich, NY, 2008), p. 3.Google Scholar
18. Sun, S., Murray, C. B., Weller, D., Folks, L., and Moser, A., Science 287, 1989 (2000).Google Scholar
19. Friedlander, S. K., Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics, 2nd Edition (Oxford University Press, New York, NY, 2000).Google Scholar
20. Krausz, F. and Ivanov, M., Rev. Mod. Phys. 81, 163 (2009).Google Scholar
21. Tegze, M., Faigel, G., Marchesini, S., Belakhovsky, M., and Chumakov, A. I., Phys. Rev. Lett. 82, 4847 (1999).Google Scholar
22. Tonomura, A., Editor, Electron Holography, 2nd Edition (Springer, New York, 1999).Google Scholar
23. Midgley, P. A. and Dunin-Borkowski, R. E., Nature Mater. 8, 271 (2009).Google Scholar
24. Cser, L., Krexner, G., and Török, Gy., Europhys. Lett. 54, 747 (2001).Google Scholar
25. Sur, B., Rogge, R. B., Hammond, R. P., Anghel, V. N. P., and Katsaras, J., Nature 414, 525 (2001).Google Scholar
26. Cser, L., Török, Gy., Krexner, G., Sharkov, I., and Faragó, B., Phys. Rev. Lett. 89, 175504 (2002).Google Scholar
27. Cser, L., Krexner, G., Markó, M., Sharkov, I., and Török, Gy., Phys. Rev. Lett. 97, 255501 (2006).Google Scholar
28. Cser, L., Török, Gy., Krexner, G., Prem, M., and Sharkov, I., Appl. Phys. Lett. 85, 1149 (2004).Google Scholar
29. Kouichi, H., Ohoyama, K., Orimo, S., Nakamori, Y., Takahashi, H., and Shibata, K., Jap. J. Appl. Phys. 47, 2291 (2008).Google Scholar
30. Cser, L., Krexner, G., Markó, M., Prem, M., Sharkov, I., and Török, Gy., Physica B. 385–386, 1197 (2006).Google Scholar
31. Miller, M. K., Atom Probe Tomography, Analysis at the Atomic Level (Kluver Academic/Plenum, New York, NY, 2000).Google Scholar
32. Seidman, D. N., Annu. Rev. Mater. Res. 37, 127 (2007).Google Scholar
33. Gault, B., Vurpillot, F., Vella, A., Gilbert, M., Menand, A., Blavette, D., and Deconihout, B., Rev. Sci. Instrum. 77, 043705 (2006). See also http://www.cameca.fr.Google Scholar
34. Niederkofler, M. and Leisch, M., Appl. Surf. Sci. 235, 132 (2004).Google Scholar
35.International Technology Roadmap for Semiconductors, 2008 Edition, International Sematech, Austin, TX (2008).Google Scholar
36. Altucci, C. and Paparo, D., “Elucidating the Fundamental Interactions of Very Small Particles: Ultrafast Science,” in Developments in Surface Contamination and Cleaning. Fundamentals and Applied Aspects, edited by Kohli, R. and Mittal, K. L. (William Andrew, Norwich, NY, 2008), p. 25.Google Scholar
37. Bragg, A. E., Verlet, J. R. R., Kammrath, A., Cheshnovsky, O., and Neumark, D. M., Science 306, 669 (2004).Google Scholar
38. Kim, J. S., LaGrange, T., Reed, B. W., Taheri, M. L., Armstrong, M. R., King, W. E., Browning, N. D., and Campbell, G. H., Science 321, 1472 (2008).Google Scholar
39. Yang, D.-S., Lao, C. S., and Zewail, A. H., Science 321, 1660 (2008).Google Scholar
40. Barwick, B., Park, H. S., Kwon, O.-H., Baskin, J. S., and Zewail, A. H., Science 322, 1227 (2008).Google Scholar
41. Mamin, H. J., Poggio, M., Degen, C. L., and Rugar, D., Nature Nanotechnol. 2, 301 (2007).Google Scholar
42. Miao, J., Charalambous, P., Kirzl, J., and Sayre, D., Nature 400, 342 (1999).Google Scholar
43. Robinson, I. K., Vartanyants, I. A., Williams, G. J., Pfeifer, M. A., and Pitney, J. A., Phys. Rev. Lett. 87, 195505 (2001).Google Scholar
44. Zuo, J. M., Vartanyants, I. A., Gao, M., Zhang, R., and Nagahara, L. S., Science 300, 1419 (2003).Google Scholar
45. Miao, J., Ishikawa, T., Johnson, B., Anderson, E. H., Lai, B., and Hodgson, K. O., Phys. Rev. Lett. 89, 088303 (2002).Google Scholar
46. Shen, Q., Bazarov, I., and Thibault, P., J. Synchrotron Rad. 11, 432 (2004).Google Scholar
47. Shapiro, D., Thibault, P., Beetz, T., Elser, V., Howells, M., Jacobsen, C., Kirz, J., Lima, E., Miao, H., Neiman, A. M., and Sayre, D., Proc. Natl. Acad. Sci. USA 102, 15343 (2005).Google Scholar
48. Huang, W. J., Zuo, J. M., Jiang, B., Kwon, K. W., and Shim, M., Nature Physics 5, 129 (2009).Google Scholar
49. Miao, J., Sayre, D., and Chapman, H. N., J. Opt. Soc. Am. A 15, 1662 (998).Google Scholar
50. Hartschuh, A., Pedrosa, H. N., Novotny, L., and Krauss, T. D., Science 301, 1354 (2003).Google Scholar