Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-10-02T13:50:01.175Z Has data issue: false hasContentIssue false

Nanocrystalline ZrN particles embedded in Zr-Fe-Cu-Al-Ni amorphous matrix.

Published online by Cambridge University Press:  11 February 2011

Marisa A. Bab
Affiliation:
Departamento de Física, Universidad Nacional de La Plata, La Plata, Argentina CIC – Comisión de Investigaciones Científicas de la provincia de Buenos Aires, Argentina
Laura C. Damonte
Affiliation:
Departamento de Física, Universidad Nacional de La Plata, La Plata, Argentina
Luis Mendoza-Zélis
Affiliation:
Departamento de Física, Universidad Nacional de La Plata, La Plata, Argentina
Stefano Deledda
Affiliation:
IFW Dresden, Institute of Metallic Materials, P.O.Box 270016, D-01171 Dresden, Germany.
Jurgen Eckert
Affiliation:
IFW Dresden, Institute of Metallic Materials, P.O.Box 270016, D-01171 Dresden, Germany.
Get access

Abstract

Melt-spun Zr64Al7Cu17Ni10Fe2 amorphous ribbons were milled under nitrogen atmosphere for different times. The resulting nitrided powders were studied by x-ray diffraction, Mössbauer spectroscopy and differential scanning calorimetry. The formation of nanosized crystalline particles, with cubic δ-ZrN structure, dispersed in the amorphous matrix was observed along with a change in the composition of the amorphous phase. Prolonged milling leads to the additional precipitation of late transition metals (Fe,Ni,Cu). The nitride particles affect the crystallization behavior and modify the thermal stability of the amorphous alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kübler, A., Eckert, J., Kirchner, A. and Schultz, L., Mater. Sci. Forum 269–272, 767 (1998).Google Scholar
2. Zhou, C.R., Lu, K. and Xu, J., Mater. Sci. Forum 343–346, 116 (2000).Google Scholar
3. Deledda, S., Eckert, J. and Schultz, L., Mater. Sci. Forum 360–362, 85 (2001).Google Scholar
4. Lu, I.-R., Moelle, C., Sagel, A., Wunderlich, R.K., Perepezko, J.H. and Fecht, H.-J., Mater. Lett. 35, 297 (1998).Google Scholar
5. Eckert, J., Seidel, M., Kübler, A., Klement, U. and Schultz, L., Scripta Mater. 38, 595 (1998).Google Scholar
6. Eckert, J., Mattern, N., Zinkevich, M. and Seidel, M., Mater. Trans. JIM 39, 623 (1998).Google Scholar
7. Mattern, N., Roth, S., Bauer, H.-D., Henninger, G. and Eckert, J., Mat. Sci. and Eng. A 304–306, 311 (2001).Google Scholar
8. Ismail, N., Gebert, A., Uhlemann, M., Eckert, J. and Schultz, L., J. Alloys and Comp. 314, 170 (2001).Google Scholar
9. Bab, M.A., Mendoza-Zélis, L. and Damonte, L.C., Hyperfine Interaction C (in press).Google Scholar
10. Bab, M. A., Ph. D.Thesis, Universidad Nacional de La Plata, Argentina, 2003.Google Scholar
11. Michaelsen, C. and Helistem, E., J. Appl. Phys. 62, 1 (1985).Google Scholar
12. Calka, A. and Williams, J. S., Mater. Sci. Forum 88–90, 1291 (1992).Google Scholar
13. Calka, A., Appl. Phys. Lett. 29, 1568 (1991).Google Scholar
14. Mendoza-Zélis, L., Bab, M.A., Damonte, L.C. and Sánchez, F.H., Mat. Sci. Forum 312–314, 179 (1998).Google Scholar
15. Bab, M.A., Mendoza-Zélis, L. and Damonte, L.C., Acta Materialia 49, 4205 (2001).Google Scholar
16. Calvayrac, Y., Chevalier, J., Harmelin, M., Quivy, A. and Bigot, J., Phi. Mag. B 48, 323 (1993).Google Scholar
17. Ogino, Y., Miki, M., Yamasaki, T. and and Inuma, T., Mater. Sci. Forum 88–90, 795 (1992).Google Scholar