Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T21:23:04.480Z Has data issue: false hasContentIssue false

Multiple Donors in Zinc Oxide Substrates

Published online by Cambridge University Press:  01 February 2011

K. Thonke
Affiliation:
Abt. Halbleiterphysik, Universität Ulm, Albert-Einstein-Allee 45, D 89069 Ulm (Germany)
N. Kerwien
Affiliation:
Abt. Halbleiterphysik, Universität Ulm, Albert-Einstein-Allee 45, D 89069 Ulm (Germany)
A. Wysmolek
Affiliation:
Grenoble High Magnetic Field Laboratory, 25 Av. de Martyrs, F 38042 Grenoble (France) Institute of Experimental Physics, 00-681 Hoza 69, Warsaw (Poland)
M. Potemski
Affiliation:
Grenoble High Magnetic Field Laboratory, 25 Av. de Martyrs, F 38042 Grenoble (France)
A. Waag
Affiliation:
Abt. Halbleiterphysik, Universität Ulm, Albert-Einstein-Allee 45, D 89069 Ulm (Germany)
R. Sauer
Affiliation:
Abt. Halbleiterphysik, Universität Ulm, Albert-Einstein-Allee 45, D 89069 Ulm (Germany)
Get access

Abstract

We investigate by photoluminescence (PL) nominally undoped, commercially available Zinc Oxide substrates (from Eagle Picher) grown by seeded chemical vapor transport technique in order to identify residual donors and acceptors. In low temperature PL spectra the dominant emission comes from the decay of bound exciton lines at around 3.36 eV. Zeeman measurements allow the identification of the two strongest lines and some weaker lines in-between as donorrelated. From the associated two-electron satellite lines binding energies of the major donors of 48 meV and 55 meV, respectively, can be deduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Look, D.C., Reynolds, D.C., Sizelove, J.R., Jones, R.L., Litton, C.W., Cantwell, G., Harsch, W.C., Sol. Stat. Comm. 105, 399 (1998)Google Scholar
2. Hofmann, D. M., Hofstetter, A., Leitner, F., Zhou, H., Henecker, F., Meyer, B.K., Orlinski, S., Schmidt, J., Baranov, P. G., Phys. Rev. Lett. 88, 45504 (2002)Google Scholar
3. Walle, C. G. Van de, Phys. Rev. Lett. 85, 1012 (2000)Google Scholar
4. , Landolt-BörnsteinNumerical Data and Functional Relationships in Science and Technology”, Ed. Martienssen, W., New Series III /41B p. 92, Springer, Heidelberg (1999)Google Scholar
5. Blattner, G., Klingshirn, C., Helbig, R., Meinl, R., phys. stat. sol. (b) 107, 105 (1981)Google Scholar
6. Gutowski, J., Presser, N., Broser, I., Phys. Rev. B 38, 9746 (1988)Google Scholar
7. Reynolds, D. C., Look, D.C., Jogai, B., Litton, C. W., Collins, T.C., Harsch, W., Cantwell, G., Phys. Rev. B. 57, 12151 (1998)Google Scholar
8. Blattner, G., Kurtze, G., Schmieder, G., Klingshirn, C., Phys. Rev. 25, 7413 (1982)Google Scholar
9. Thomas, D. G., Hopfield, J. J., Phys. Rev. 128, 2135 (1962)Google Scholar
10. Thonke, K. et al., to be publishedGoogle Scholar
11. Roesner, W., Wunner, G., Herold, H., Ruder, H., J. Phys. B 17, 29 (1984)Google Scholar
12.A ≈ 10% electron mass anisotropy is quoted in the calculations of: Lambrecht, W. R., Rodina, A. V., Limpijumong, S., Segall, B., Meyer, B. K., Phys. Rev. B 65, 75207 (2002)Google Scholar
13. Yoshikawa, H., Adachi, S., Jpn. J. Appl. Phys. 36, 6237 (1997)Google Scholar
14. Aggarwal, R. L., Ramdas, A. K., Phys. Rev. A140, 1246 (1965)Google Scholar