Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T07:28:35.770Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulations of SiSe2 Nanowires

Published online by Cambridge University Press:  10 February 2011

Wei Li
Affiliation:
Concurrent Computing Laboratory for Material Simulations Department of Physics & Astronomy, Department of Computer Science Louisiana State University, Baton Rouge, LA 70803-4001, [email protected],
Rajiv K. Kalia
Affiliation:
Concurrent Computing Laboratory for Material Simulations Department of Physics & Astronomy, Department of Computer Science Louisiana State University, Baton Rouge, LA 70803-4001, [email protected],
Priya Vashishta
Affiliation:
Concurrent Computing Laboratory for Material Simulations Department of Physics & Astronomy, Department of Computer Science Louisiana State University, Baton Rouge, LA 70803-4001, [email protected],
Get access

Abstract

Structural and mechanical behavior of SiSe2 nanowires is investigated with the moleculardynamics (MD) method. Nanowires contain finite number of non-intersecting chains of edgesharing Si(Sel/2)4 tetrahedra. The simulations are based on an effective interatomic potential containing both 2- and 3-body interactions. It is found that the nanowires remain highly crystalline and stay in the elastic deformation regime up to a critical strain. Under large uniaxial strain, fracture of the nanowires is initiated by broken bonds in one of the chains at the outermost layer. This induces cross-linking among the neighboring chains, which leads to the presence of cornersharing tetrahedra and local amorphization. Local amorphization propagates across nanowires while multiple cracks start at the boundaries of the amorphous region. The dynamics of amorphization and fracture are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Guerret-Piecourt, C., Bouar, Y.L., Loiseau, A., Pascard, H., Nature, 372, 761, (1994).Google Scholar
2. Whitney, T.M., Jiang, J.S., Searson, P.C., Chien, C.L., Science, 261, 1316, (1993).Google Scholar
3. Knoedler, C.M., J. Appl. Phys. , 68, 1129, (1990).Google Scholar
4. Gladden, L. F., Elliott, S. R., J. Non-Crystalline Solids, 109, 211222 (1989).Google Scholar
5. Johnson, R. W., et al., J. Non-Crystalline Solids, 83, 251271 (1986).Google Scholar
6. Sugai, S., Phys. Rev., B35, 13451361 (1987).Google Scholar
7. Susman, S., Price, D.L., Volin, K.J., Dejus, R.J., Montague, D.G., J. Non-Crystalline Solids, 106, 26, (1988).Google Scholar
8. Tenhover, M., Hazle, M.A., Grasselli, R.K., Phys. Rev. Lett., 51, 404, (1983).Google Scholar
9. Griffiths, J.E., Malyj, M., Espinosa, G.P., Remeika, J.P., Phys. Rev., B30, 6978, (1984).Google Scholar
10. Tenhover, M., Boyer, R.D., Henderson, R.S., Hammond, T.E., Shreve, G.A., Solid State Communications, 65, 15171521 (1988).Google Scholar
11. Antonio, G.A., Kalia, R.K., Nakano, A., Vashishta, P., Phys. Rev., B45, 7455, (1992).Google Scholar
12. Bhadra, R., Susman, S., Volin, K.J., Grimsditch, M., Phys. Rev., B39, 1378, (1989).Google Scholar
13. Chandrasekharaiah, M.S., Margrave, J.L., J. Phys. Chem. Ref. Data, 23, 499, (1994).Google Scholar
14. Tomaszkiewicz, I., Susman, S., Volin, K.J., O'Hare, P.A.G., J. Chem. Thermodynamics, 26, 1081, (1994).Google Scholar
15. Vashishta, P., Kalia, R. K., Rino, J. P., Ebbsjo, I., Phys. Rev., B41, 1219712209 (1990).Google Scholar
16. Jin, W., Kalia, R. K., Vashishta, P., Rino, J. P., Phys. Rev. Lett., 71, 3146 (1993).Google Scholar
17. Nakano, A., Bi, L., Kalia, R. K., Vashishta, P., Phys. Rev., B49, 94419452 (1994).Google Scholar
18. Loong, C.K., Vashishta, P., Kalia, R.K., Ebbsjö, I., Europhys. Lett., 31(4), 201 (1995)Google Scholar
19. Johnson, R.W., Susman, S., McMillan, J., Volin, K.J., Mat. Res. Bull., 21, 41, (1986).Google Scholar
20. Peters, J., Krebs, B., Acta Cryst., B38, 1270, (1982).Google Scholar
21. Stillinger, F.H., Weber, T.A., Phys. Rev., A28, 24082416 (1983).Google Scholar