Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-10-06T02:04:22.590Z Has data issue: false hasContentIssue false

Modeling receptor-mediated endocytosis via mechanics of cell adhesion

Published online by Cambridge University Press:  26 February 2011

Wendong Shi
Affiliation:
Huajian Gao
Affiliation:
Lambert Ben Freund
Affiliation:
Get access

Abstract

A mathematical model describing how a cell membrane with diffusive mobile receptors wraps around a ligand coated cylindrical or spherical particle has been recently developed to model particle size effects in receptor mediated endocytosis. The model predicted an optimal particle size for the smallest wrapping time, as well as a minimum and a maximum particle size for successful wrapping. The results showed that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report some further progresses on modeling a spontaneous membrane curvature induced by clathrin or caveolin coats at the inner membrane leaflet as well as simultaneous entry of many particles into cells. It is found that a spontaneous membrane curvature narrows the particle size range for successful wrapping and there exists an optimal particle density for maximum particle adsorptivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gao, H. J., Shi, W. D. and Freund, L. B., Proc. Nat. Acad. Sci. 102, 94699474 (2005)Google Scholar
2 Saltzman, W. M., Drug Delivery: Engineering Principles for Drug therapy (Oxford University, Oxford, 2001).Google Scholar
3 Davis, S. S., Trends Biotechnol. 15, 217224 (1997)Google Scholar
4 Pantarotto, D., Briand, J., Prato, M. and Bianco, A., Chem. Commun. 16–17 (2004)Google Scholar
5 Pantarotto, D., Singh, R., McCarthy, D., Erhardt, M., Briand, J., Prato, M., Kostarelos, K. and Bianco, A., Angew. Chem. Int. Ed. 43, 52425246 (2004)Google Scholar
6 Kam, N. W. S., Jessop, T. C., Wender, P. A. and Dai, H. J., J. Am. Chem. Soc. 126, 68506851 (2004)Google Scholar
7 Kam, N. W. S., O'Connell, M., Wisdom, J. A. and Dai, H. J., Proc. Nat. Acad. Sci. 102, 1160011605 (2005)Google Scholar
8 Warheit, D. B., Laurence, B. R., Reed, K. L., Roach, D. H., Reynolds, G. A. M. and Webb, T. R., Toxicol. Sci. 77, 117125 (2004)Google Scholar
9 Lam, C. W., James, J. T., McCluskey, R. and Hunter, R. L., Toxicol. Sci. 77, 126134 (2004)Google Scholar
10 Cann, A. J., Principles of Molecular Virology, 2nd ed. (Academic Press, San Diego, 1997).Google Scholar
11 Levy, J. A., Fraenkel-Conrat, H. F. and Owens, R. A., Virology, 3rd ed. (Prentice Hall, New York, 1994).Google Scholar
12 Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. D., Molecular Biology of the Cell, 3rd ed. (Garland Science, New York, 1994).Google Scholar
13 Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P., Molecular Biology of the Cell, 4th ed. (Garland Science, New York, 2002).Google Scholar
14 Kirchhausen, T., Cell, 109, 413416 (2002)Google Scholar
15 Sieczkarski, S. B. and Whittaker, G. R., J. Virol. 76, 1045510464 (2002)Google Scholar
16 Lakadamyali, M., Rust, M. J. and Zhuang, X., Microbes Infect. 6, 929936(2004)Google Scholar
17 Desai, M. P., Labhasetwar, V., Walter, E., Levy, R. J. and Amidon, G. L., Pharm. Res. 14, 15681573 (1997)Google Scholar
18 Prabha, S., Zhou, W. Z., Panyam, J. and Labhasetwar, V., Int. J. Pharm. 244 105115 (2002)Google Scholar
19 Aoyama, Y., Kanamori, T., Nakai, T., Sasaki, T., Horiuchi, S., Sando, S. and Niidome, T., J. Am. Chem. Soc. 125, 34553457 (2003)Google Scholar
20 Nakai, T., Kanamori, T., Sando, S. and Aoyama, Y., J. Am. Chem. Soc. 125, 84658475 (2003)Google Scholar
21 Osaki, F., Kanamori, T., Sando, S., Sera, T. and Aoyama, Y., J. Am. Chem. Soc. 126, 65206521 (2004)Google Scholar
22 Freund, L. B. and Lin, Y., J. Mech. Phys. Solids 52, 24552472 (2004)Google Scholar
23 Shenoy, V. B. and Freund, L. B., Proc. Nat. Acad. Sci. 102, 32133218 (2005)Google Scholar
24 Boulbitch, A., Guttenberg, Z. and Sackmann, E., Biophys. J. 81, 27432751 (2001)Google Scholar
25 Guttenberg, Z., Lorz, B., Sackmann, E. and Boulbitch, A., Europhys. Lett. 54, 826832 (2001)Google Scholar
26 Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids 2nd ed. (Oxford University, Oxford, 1959).Google Scholar
27 Dill, K. A. and Bromberg, S., Molecular Driving Force (Garland Science, New York, 2003).Google Scholar
28 Helfrich, W., Z. Naturforsch. C 28, 693703 (1973)Google Scholar
29 Bell, G. I., Science 200, 618627 (1978)Google Scholar
30 van Effenterre, D. and Roux, D., Europhys. Lett. 64, 543549 (2003)Google Scholar
31 Tzlil, S., Deserno, M., Gelbart, W. M. and Ben-Shaul, A., Biophys. J. 86, 20372048 (2004)Google Scholar
32 Briggs, J. A. G., Wilk, T. and Fuller, S. D. J. Gen. Virol. 84, 757768 (2003)Google Scholar
33 Quinn, O., G. Griffiths and Warren, G., J. Cell Biol. 98, 21422147 (1984)Google Scholar
34 Lerner, D. M., Deutsch, J. M. and Oster, G. F., Biophys. J. 65, 7379 (1993)Google Scholar
35 van Effenterre, D. and Roux, D., Europhys. Lett. 64, 543549 (2003)Google Scholar
36 Tzlil, S., Deserno, M., Gelbart, W. M. and Ben-Shaul, A., Biophys. J. 86, 20372048 (2004)Google Scholar