Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:42:22.193Z Has data issue: false hasContentIssue false

Microstructuring of Silica and Polymethylmethacrylate Glasses by Femtosecond Irradiation for MEMS Applications

Published online by Cambridge University Press:  15 March 2011

Saulius Juodkazis
Affiliation:
Tokushima University, 2-1 Minamijosanjima, Tokushima 770-8506, JAPAN
Kazuhiko Yamasaki
Affiliation:
Tokushima University, 2-1 Minamijosanjima, Tokushima 770-8506, JAPAN
Andrius Marcinkeviĉius
Affiliation:
Tokushima University, 2-1 Minamijosanjima, Tokushima 770-8506, JAPAN
Vygantas Mizeikis
Affiliation:
Tokushima University, 2-1 Minamijosanjima, Tokushima 770-8506, JAPAN
Shigeki Matsuo
Affiliation:
Tokushima University, 2-1 Minamijosanjima, Tokushima 770-8506, JAPAN
Hiroaki Misawa
Affiliation:
Tokushima University, 2-1 Minamijosanjima, Tokushima 770-8506, JAPAN
Thomas Lippert
Affiliation:
Paul Scherrer Institut, CH-5232 Villigen PSI, SWITZERLAND
Get access

Abstract

We report the fabrication of complex 3D microstructures in silica and polymethyl- methacrylate glass by a combination of femtosecond laser microfabrication and chemical wet etching techniques. It is demonstrated that fabrication of interconnected network of channels having lengths of about 200 νm, and diameters as small as 10 νm is possible due to the enhanced etching selectivity (typically 20 - 60) in the laser-irradiated regions. Thus, it becomes feasible to form 3D micro-fluidic and photonic crystal structures in transparent glass-like materials using this approach. In addition, preliminary results on microstructuring of rubber are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sales, T. R., Phys. Rev. Lett., 81 3844 (1998).Google Scholar
2. Linde, D. von der, Rzazewski, K., Appl. Phys. B, 63 499 (1996).Google Scholar
3. Sun, H., Xu, Y., Juodkazis, S., Sun, K., Watanabe, M., Matsuo, S., Misawa, H., Nishii, J., Opt. Lett., 26 325 (2001).Google Scholar
4. Sun, H., Xu, Y., Juodkazis, S., Sun, K., Watanabe, M., Matsuo, S., Misawa, H., Nishii, J., Opt. Lett., 26 325 (2001).Google Scholar
5. Juodkazis, S., Marcinkeviçius, A., Watanabe, M., Mizeikis, V., Matsuo, S., Misawa, H., in Laser- Induced Damage of Optical Materials: 2000, edited by Exarhos, G. J., Guenther, A. H., Kozlowski, M. R., Lewis, K. L., Soileau, M. J., (SPIE Proc. 4347, Bellingham, WA, 2001) pp.212222.Google Scholar
6. Efimov, O. M., Popkov, V. S., Soileau, M. J., Sov. J. Opt. Technology, 2 21, (1996).Google Scholar
7. Marcinkeviçius, A., Juodkazis, S., Watanabe, M., Miwa, M., Matsuo, S., Misawa, H., Nishii, J., Opt. Lett., 26 277, (2001).Google Scholar
8. Marcinkeviçius, A., Juodkazis, S., Watanabe, M., Miwa, M., Matsuo, S., Misawa, H., Nishii, J., in Laser Applications in Microelectronics and Optoelectronic ManufacturingVI, LASE, edited by Gover, M. C., Helvajian, H., Sugioka, K., Dubowski, J. J. (SPIE Proc. 4274, Bellingham, WA, 2001) pp. 469477.Google Scholar