Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T18:03:00.255Z Has data issue: false hasContentIssue false

The microstructure of GaN nucleation layers grown by MOCVD on (1120) sapphire versus pressure and temperature

Published online by Cambridge University Press:  01 February 2011

T. Wojtowicz
Affiliation:
SIFCOM UMR 6176 CNRS, ENSICAEN, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France
P. Ruterana*
Affiliation:
SIFCOM UMR 6176 CNRS, ENSICAEN, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France
M. E. Twigg
Affiliation:
SIFCOM UMR 6176 CNRS, ENSICAEN, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France
R. L. Henry
Affiliation:
SIFCOM UMR 6176 CNRS, ENSICAEN, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France
D. D. Koleske
Affiliation:
SIFCOM UMR 6176 CNRS, ENSICAEN, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France
A. E. Wickenden
Affiliation:
SIFCOM UMR 6176 CNRS, ENSICAEN, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France
*
* Tel. 33 2 31 45 26 53, Fax. 33 2 31 45 26 60, E-mail: [email protected]
Get access

Abstract

In this work, the evolution of morphology and defect structure in GaN nucleation layers on the a-plane of sapphire are investigated using TEM. The growth temperature and pressure were varied from 560 to 1100°C and from 20 to 600 torr, respectively. Whereas the highest growth temperature leads to a continuous layer, a 2D growth mode is not attained when the chamber pressure is varied from 20 to 600 torr at 1028°C. At the highest pressures (>300 t orr), a large distribution is obtained for the island sizes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

2

Sandia National Laboratories, Albuquerque, NM 87185

3

Army Research Laboratoy, Adelphi, MD 20783

References

REFERENCES

1. Nakamura, S., Senoh, M., and Mukai, T., Appl. Phys. Lett., 64, 1687(1994)Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996)Google Scholar
3. Mohammad, S. N., Salvador, A., and Morkoç, H., Proc. IEEE 83, 1306 (1995)Google Scholar
4. Vennegues, P., Beaumont, B., and Gibart, P., J. Appl. Phys. 87, 4175 (2000)Google Scholar
5. Zheleva, T. S., Ashmawi, W. M., Jones, K. A., Phys. Stat. Sol. 176, 545 (1999)Google Scholar
6. Koleske, D. D., Wickenden, A. E., Henry, R. L., DeSisto, W. J., and Norman, R. J., J. Appl. Phys. 84, 1998 (1998)Google Scholar
7. Wickenden, A. E., Koleske, D. D., Henry, R. L., Norman, R. J., Culbertson, J. C., and Twigg, M. E., J. Electronic Mater. 28, 301(1999).Google Scholar
8. Fatemi, M., Wickenden, A. E., Koleske, D. D., Twigg, M. E., Freitas, J. A. Jr, Henry, R. L., and Norman, R. J., Appl. Phys. Lett. 73, 608 (1998)Google Scholar
9. Twigg, M. E., Koleske, D. D., Wickenden, A. E., Henry, R. L., and Binari, S. C., Appl. Phys. Lett. 79, 4322 (2001)Google Scholar
10. Dovidenko, K., Oktyabrsky, S., Narajan, J., and Razeghi, M., J. Appl. Phys. 79, 2439 (1996)Google Scholar
11. Twigg, M. E., Henry, R. L., Wickenden, A. E., Koleske, D. D., Fatemi, M., and Culbertson, J. C., Inst. Phys. Conf. Ser. 164, 367 (1999).Google Scholar