Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:20:15.492Z Has data issue: false hasContentIssue false

Microstructural and Magnetic Properties of Core-Shell Ni-Ce Nanocomposite Particles Assemblies

Published online by Cambridge University Press:  17 March 2011

Xiang-Cheng Sun
Affiliation:
Prog. Simulación Molecular, Instituto Mexicano del Petróleo, Lázaro Cárdenas 152#, 07730, D.F. Máxico, México E-mail: [email protected]
J. A. Toledo
Affiliation:
Prog. Simulación Molecular, Instituto Mexicano del Petróleo, Lázaro Cárdenas 152#, 07730, D.F. Máxico, México
M. Jose Yacaman
Affiliation:
ININ, Amsterdam No.46-202, Col. Condesa 06100, D. F.México, México
Get access

Abstract

Novel magnetic core-shell Ni-Ce nanocomposite particles (15-50 nm) are presented. SEM observation indicates a strongly ferromagnetic interacting order with chain-like features among Ni-Ce nanocomposite particle assemblies. Typical HREM image demonstrates that many planar defects (i. e. stacking faults) exist in large Ni core zone (10-45 nm ); the innermost NiCe alloy and outermost NiO oxide exist in the thin shell layers ( 3-5 nm ). Nano-diffraction patterns show an indication of well-defined spots characteristic and confirm the nature of this core-shell nanocomposite particles. Superparamagnetic relaxation behavior above average blocking temperature (TB =170K) for Ni-Ce nanocomposite particles assemblies have been exhibited, this superparamagnetic behavior is found to be modified by interparticle interactions, which depending on the applied field; size distribution and coupling with the strong interparticle interaction. In addition, an antiferromagnetic order occurs with a Neél temperature TN of about 11K due to Ce ion magnetic order fuction. A spin-flop transition is also observed below TN at a certain applied field and low temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Magnetic properties of fine particles , Dorman, J. L. and Fiorani, D. Eds. ( North-Holland, Amsterdam, 1991).Google Scholar
2. Chien, C. L., J. Appl. Phys. , 69, 5267 (1991).Google Scholar
3. Shull, R. D. and Bennett, L. H., Nanostruct. Mater., 1, 83 (1992).Google Scholar
4. Martinez, B., Obrador, X., Balcells, Li., Rouanot, A., and Monty, C., Phys. Rev. Lett., 80, 181 (1998).Google Scholar
5. Ibrahim, M. M., Darwish, S. and Seehra, M. S., Phys. Rev. B , 51, 2955 (1995).Google Scholar
6. McHerry, M. E., Majetich, S. A. and Kirkpatrick, E. M., Mater. Sci. Eng., A204, 19 (1995).Google Scholar
7. Zhang, X.X., Tejeda, J., Hernandez, J.M. and Ziolo, R.F., Nanostruct. Mater., 9, 301 (1997).Google Scholar
8. Morup, S., odker, F. B., Hendriksen, P. V., and Linderoth, S., Phys. Rev. B 52, 287 (1995).Google Scholar
9. Cui, Z. L., Dong, L. F. and Zhang, Z. K., Nanostruct. Mater., 5 (7/8), 829 (1995).Google Scholar
10. Chen, Q. and Zhang, Z. J., Appl. Phys. Lett., 73, 3165 (1998).Google Scholar
11. Hanson, M., Johansson, C., Pederson, M. S. and Morup, S., J. Phys: Conden. Matter., 7, 9269 (1995).Google Scholar
12. Fiorani, D., Dorman, J. L., Cherkaoui, R., Tronc, E., Lucari, F., F. D'Orazio, Spinu, L., Nogues, M., Garcia, A. and Testa, A. M., J. Magn. Magn. Mater., 196–197, 143 (1999).Google Scholar
13. Fourgerot, F., Chevalier, B. and Etourneau, J., Physica B , 230/232, 256 (1997).Google Scholar