Article contents
Microcrystalline Silicon for Solar Cells at High Deposition Rates by Hot Wire Cvd
Published online by Cambridge University Press: 01 February 2011
Abstract
We have explored which deposition parameters in Hot Wire CVD have the largest impact on the quality of microcrystalline silicon (μc-Si) made at deposition rates (Rd) < 10 Å/s for use in thin film solar cells. Among all parameters, the filament temperature (Tfil) appears to be crucial for making device quality films. Using two filaments and a filament-substrate spacing of 3.2 cm, μc-Si films, using seed layers, can be deposited at high Tfil (∼2000°C) with a crystalline volume fraction < 70-80 % at Rd's < 30 Å/s. Although the photoresponse of these layers is high (< 100), they appear not to be suitable for incorporation into solar cells, due to their porous nature. n-i-p cells fabricated on stainless steel with these i-layers suffer from large resistive effects or barriers, most likely due to the oxidation of interconnected pores in the silicon layer. The porosity is evident from FTIR measurements showing a large oxygen concentration at ∼1050 cm-1, and is correlated with the 2100 cm-1 signature of most of the Si-H stretching bonds. Using a Tfil of 1750°C, however, the films are more compact, as seen from the absence of the 2100 cm-1 SiH mode and the disappearance of the FTIR Si-O signal, while the high crystalline volume fraction (< 70-80 %) is maintained. Using this Tfil and a substrate temperature of 400°C, we obtain an efficiency of 4.9 % for cells with a Ag/ZnO back reflector, with an i-layer thickness of only ∼0.7 μm. High values for the quantum efficiency extend to very long wavelengths, with values of 33 % at 800 nm and 15 % at 900 nm, which are unequalled by a-SiGe:H alloys. Further, by varying the substrate temperature to enable deposition near the microcrystalline to amorphous transition (‘edge’) and incorporating variations in H2 dilution during deposition of the bulk, efficiencies of 6.0 % have been obtained. The Rd's of these i-layers are 8-10 Å/s, and are the highest to date obtained with HWCVD for microcrystalline layers used in cells with efficiencies of ∼6 %.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2002
References
- 20
- Cited by