Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T07:15:45.018Z Has data issue: false hasContentIssue false

Micro- and Nanostructure of Co/Pd and Co/Au Multilayers Studied with Transmission Electron Microscopy

Published online by Cambridge University Press:  26 February 2011

F. Hakkens
Affiliation:
Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands
W. Coene
Affiliation:
Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands
F.J.A. Den Broeder
Affiliation:
Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands
Get access

Abstract

Several metallic multilayers with very thin magnetic Co layers display a preferred magnetization perpendicular to the interfaces. There are strong indications that the magnitude of this anisotropy depends critically on details of the microstructure of the multilayers, and especially on the atomic structure of the interfaces. The micro- and nanostructure of Co/Pd and Co/Au multilayers, which exhibit a large difference in lattice parameter (9% and 14% respectively), was studied by conventional transmission electron microscopy (TEM) and high resolution TEM (HREM). The multilayers, grown by vapor deposition, show a columnar structure and have a convex curvature in the growth direction. In Co/Au multilayers also the Au lattice is bent. Misfit dislocations are observed at the interfaces even for Co layers of one atomic layer thickness. Generally the interfaces show atomic roughness, which is more severe for Co/Au than for Co/Pd.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Carcia, P.F., Meinhaldt, A.D. and Suna, A., Appl. Phys. Lett. 47, 178 (1985)Google Scholar
2 Broeder, F.J.A. den, Donkersloot, H.C., Draaismab, H.J.G. and Jonge, W.J.M. de, J. Appl. Phys. 61, 4317 (1987)Google Scholar
3 Carcia, P.F., J. Appl. Phys. 63, 5066 (1988)Google Scholar
4 Broeder, F.J.A. den, Kuiper, D., Mosselaer, A.P. van den and Hoving, W., Phys. Rev. Lett. 60, 2769 (1988)Google Scholar
5 Draaisma, H.J.G., Broeder, F.J.A. den and Jonge, W.J.M. de, J. M. M. M. 66, 351 (1987)Google Scholar
6 Ndel, L., J. Phys. Rad. 15, 225 (1954)Google Scholar
7 Chappert, C. and Bruno, P., J. Appl. Phys. 64, 5736 (1988)Google Scholar
8 Broeder, F.J.A. den, Hoving, W. and Bloemen, P.J.H., J. M. M. M., in press (1991)Google Scholar
9 Dirks, A.G. and Leamy, H.J., Thin Solid Films 47, 219 (1977)Google Scholar
10 Gao, Y., Shewmon, P.G. and Dregia, S.A., Acta Met. 37, 3165 (1989)Google Scholar
11 Frank, F.C. and Merwe, J.H. van der, Proc. R. Soc. London Ser. A198, 216 (1949)Google Scholar
12 Purcell, S.T., Kesteren, H.W. van, Cosman, E.C. and Hoving, W., J. M. M. M., in press (1991)Google Scholar