Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T18:22:06.182Z Has data issue: false hasContentIssue false

Mechanical Properties of Excimer Laser Modified Titanium Surfaces

Published online by Cambridge University Press:  15 February 2011

T. R. Jervis
Affiliation:
Center for Materials Science
T. G. Zocco
Affiliation:
Nuclear Materials Technology Division
K. M. Hubbard
Affiliation:
Materials Science and Technology Division Los Alamos National Laboratory, Los Alamos, NM 87545
M. Nastasi
Affiliation:
Materials Science and Technology Division Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

Excimer laser processing enables both thermally-driven transformations and the incorporation of solutes into the surface of materials through melting and diffusional mixing. We have examined the effect of excimer laser processing on the microstructure and surface mechanical properties of titanium alloys. Changes in the surface hardness due to laser processing were studied using a Nanoindenter™. Alloying experiments using both mixing of evaporated surface layers of boron and laser gas alloying in air and in nitrogen all result in changes in the surface hardness of the material. Alloying with boron results in an amorphous surface which is somewhat harder than the as polished surface. Laser processing in air and pure nitrogen results in incorporation of oxygen and nitrogen and the development of fine precipitates of TiO and TiN respectively. Substantial increases in surface hardness result due to solution and precipitation mechanisms. Nanoindenter™ data from several depths in the material are correlated with microstructure and solute concentration to illuminate the strengthening mechanisms involved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Oliver, W. C., Hutchings, R., and Pethica, J.B, ASTM Spec. Tech. Pub. 889 90 (1986).Google Scholar
2 Oliver, W. C. & Pharr, G. M., J. Mater. Res. 7 1564 (1992).Google Scholar
3 Jervis, T. R., Hirvonen, J-P., Nastasi, M., Zocco, T. G., Martin, J. A., Pharr, G. M., & Oliver, W. C., Mat. Res. Soc. Symp. Proc. 140 189 (1989).CrossRefGoogle Scholar
4 Jervis, T. R., Hirvonen, J-P., Nastasi, M., and Cohen, M. R., Mat. Res. Soc. Symp. Proc. 157 395 (1990).Google Scholar
5 Excimer Laser Surface Modification; Process and Properties, Jervis, T. R., Nastasi, M., & Hirvonen, J-P., In Press, Mater. Res. Soc. Symp Proc. 279 (1993).Google Scholar
6 Konitzer, D. G., Muddle, B. C., & Fraser, H. L., Metall. Trans. 14A 1979 (1983).CrossRefGoogle Scholar
7 Jervis, T. R., Nastasi, M., Hirvonen, J-P., & Zocco, T. G., American Institute of Physics Conf. Proc. 231 652 (1991).Google Scholar
8 Jervis, T. R., Zocco, T. G., & Steele, J. H. Jr., Mater. Res. Soc. Symp Proc. 201 535 (1991).Google Scholar
9 Jervis, T. R., Hubbard, K. M., & Zocco, T. G., Mater. Res. Soc. Symp Proc. 236 397 (1992).Google Scholar
10 Cameron, J. R., Phys. Rev. 90 839 (1953).Google Scholar
11 Embury, J. D., Metall. Trans. 16A 2191 (1985).CrossRefGoogle Scholar
12 Corti, C. W., Cotterill, P., and Fitzpatrick, G. A., Int. Met. Rev. 19 77 (1974).CrossRefGoogle Scholar