Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T12:36:46.419Z Has data issue: false hasContentIssue false

Magnetic Measurements on Stressed and Stress Relieved La0.66Ca0.33MnO3 Thin Films

Published online by Cambridge University Press:  10 February 2011

H.-U. Habermeier
Affiliation:
Max-Planck-Institut - FKF, Heisenbergstr. 1 D-70569, Stuttgart, Germany
R. B. Praus
Affiliation:
Max-Planck-Institut - FKF, Heisenbergstr. 1 D-70569, Stuttgart, Germany
G. M. Gross
Affiliation:
Max-Planck-Institut - FKF, Heisenbergstr. 1 D-70569, Stuttgart, Germany
F. S. Razavi
Affiliation:
Max-Planck-Institut - FKF, Heisenbergstr. 1 D-70569, Stuttgart, Germany
Get access

Abstract

In general, epitaxially grown thin films are biaxially stressed if the lattice mismatch of substrate and film is below 2%. We have used epitaxial strain as an extrinsic source of tensile stress exerted to La0.66Ca0.33 MnO3 thin films deposited on SrTiO3 single crystal substrates. The average stress in the film is a function of film thickness and post deposition annealing. Thickness variation and annealing procedures have been used to explore the stress dependence of the characterisics of magnetization curves of the stressed films. It could be shown that the inflection point of the magnetization curve which determines the transition from Blochwall movements to rotations of the magnetization vector and the Rayleigh constant of the virgin magnetization curve are correlated with the stress of the films in analogy to results obtained for plastically deformed single crystals of conventional ferromagnetic metals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jonker, G. H. and Santen, J. H. Van, Physica XVI, p. 337 (1950)Google Scholar
2. Vogler, J., Physica XX, p. 49 (1954)Google Scholar
3. Kusters, R. M., Singleton, J., Keen, D. A., McGreevy, R., and Hayes, W., Physica B 155, p. 362 (1989).Google Scholar
4. Jin, S., O'Brian, H. M., Tiefel, T. H., McCormack, M., and Rhodes, W. W., Appl. Phys. Lett. 66, p. 382 (1995).Google Scholar
5. Tomoika, Y., Asamitsu, A., Moritomo, Y., Kuwahara, H., and Tokura, Y., Phys. Rev. B 53 p. R 1,689 (1996)Google Scholar
6. Bertram, H. N., IEEE Trans. Magn. 31, p. 2,573 (1995)Google Scholar
7. Zener, C., Phys. Rev. 82, p. 403 (1951).Google Scholar
8. Millis, A. J., Littlewood, P. B., and Shraiman, B. I., Phys. Rev. Lett. 74, p.5,144 (1995)Google Scholar
9. Jonker, G. H., Physica XX (1954)Google Scholar
10. Fontcuberta, J., Sefar-Martinez, A., Pinol, S., Garcia-Munoz, J. L., and Obradors, X., Phys. Rev. Lett. 76, p. 1,122 (1996)Google Scholar
11. Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramesh, R., and Chen, L. H., Science 264, p. 413 (1994).Google Scholar
12. Kwon, C. W., Robson, M. C., Kim, K.-C., Gu, J. Y., Lofland, S. E., Bhagat, S. M., Trajanovic, Z., Rajewari, M., Venkatesan, T., Kratz, A. R., Gomez, R. D., and Ramesh, R., J. Magn. Mag. Mat. 172 p229 (1997)Google Scholar
13. Millis, A. J., Darling, T., and Migliori, A., J. Appl. Phys. 83 p. 1,588 (1988)Google Scholar
14. Praus, R., Leibold, B., Gross, G.M. and Habermeier, H.-U., Appl. Surf. Science 138–139, p. 40 (1999).Google Scholar
15. Roch, T., Razavi, F. S., Leibold, B., Praus, R., and Habermeier, H.-U., Appl. Phys. A 67, p. 1 (1998).Google Scholar
16. Gross, G. M., Praus, R., Leibold, B., and Habermeier, H.-U., Appl. Surf. Science 138–139 p. 117 (1999)Google Scholar
17. Habermeier, H.-U. and Kronmüller, H., Angew. Phys. 30, p. 13 (1970).Google Scholar
18. Lebedev, O.I., Tendeloo, G. van, Amelinckx, S., Leibold, B. ans Habermeier, H.-U., Phys. Rev. B. 58, p. 8,065 (1998)Google Scholar