Article contents
Magnetic Circular Dichroism in X-Ray Absorption and Core-Level Photoemission
Published online by Cambridge University Press: 03 September 2012
Abstract
Here is reported observation of magnetic circular dichroism in both x-ray absorption and core-level photoemission of ultra thin magnetic films using circularly polarized x-rays. Iron films (1–4 ML) grown on a Cu (001) substrate at 150 K and magnetized perpendicular to the surface show dramatic changes in the L2,3 absorption branching ratio for different x-ray polarizations. For linearly-polarized x-rays perpendicular to the magnetic axis of the sample the branching ratio was 0.75. For films ≥ 2 ML, this ratio varied from 0.64 to 0.85 for photon spin parallel and anti-parallel, respectively, to the magnetic axis. This effect was observed either by changing the x-ray helicity for a fixed magnetic axis, or by reversing the magnetic axis for a fixed x-ray helicity. Our observation can be analyzed within a simple one-electron picture, if the raw branching ratios are normalized so that the linear value becomes statistical. Furthermore, warming the films to -300 K eliminated this effect, indicating a loss of magnetization in the film over a temperature range of -30 K. Finally, reversing the relative orientation of the photon spin and the magnetic axis from parallel to anti-parallel allowed measurement with photoemission of the exchange splitting of the Fe 2p and 3p core levels which were found to be 03 eV and 0.2 eV, respectively. These results are consistent with earlier studies, but the use of off-plane circularly-polarized x-rays from a bending magnet monochromator offers -2 orders of magnitude greater intensity than typical spin-polarization measurements. Finally, we have performed preliminary x-ray absorption studies of UFe2, demonstrating the feasibilty of MCD Measurements in 5f as well as 3d Materials.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1993
References
- 2
- Cited by