Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T06:34:08.310Z Has data issue: false hasContentIssue false

Magnetic and Transport Properties of Micron Size Magnetic Participate Arrays Fabricated on a 2D Superconducting Nb Films and Sub-Micron Magnetic Wires

Published online by Cambridge University Press:  10 February 2011

Yoshichika Otani
Affiliation:
Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980, Japan, [email protected]
Kazuaki Fukamichi
Affiliation:
Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980, Japan, [email protected]
Osamu Kitakarni
Affiliation:
Research Institute for Scientific Measurements, Tohoku University, Sendai 980, Japan
Yutaka Shimada
Affiliation:
Research Institute for Scientific Measurements, Tohoku University, Sendai 980, Japan
Bemard Pannetier
Affiliation:
Centre de Recherches sur les Très Basses Température, CNRS, F-38042 Grenoble, France
Jean-Pierre Nozieres
Affiliation:
Laboratoire Louis Néel, CNRS, F-38042 Grenoble, France
Tsuyoshi Matsuda
Affiliation:
Advanced Research Lab., Hitachi Ltd., Hatoyama, Saitama 350–03, Japan
Akira Tonomura
Affiliation:
Advanced Research Lab., Hitachi Ltd., Hatoyama, Saitama 350–03, Japan
Get access

Abstract

Micron size particulate arrays of amorphous R-Co (R = Sm and Gd) alloys with a thickness of 200 nm were fabricated on top of a 20 nm thick Nb film by means of e-beam lithography and sputter deposition. The arrays consist of 2 × 2 μm2 square particles with a spatial periodicity of 4 μm along an edge of the square. Interesting oscillations due to the fluxoid quantization were observed both in the transition lines and the magnetization curves of the underlying Nb film. The superconducting state of the Nb film was found to be modulated by stray fields of the square magnetic particles.

Sub-micron size ferromagnetic Fe wires were also prepared in order to investigate the magnetoresistance effect associated with pinning and depinning processes of a magnetic domain wall confined in the wire. Low temperature transport, Lorentz microscopy and electron holography measurements demonstrated a clear change in resistivity associated with the depinning of a pinned single domain wall.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Smilh, J. F., Schultz, S., Fredkin, D., Kern, D., Ritshton, S. A., Schmid, H., Cali, M. and Koehler, T. R., J. Appl. Phys. 69 526 (1991).Google Scholar
[2] Geoffroy, O., Givord, D., Otani, Y., Pannetier, B. and Ossart, F., J. Magn. Magn. Mater. 121 223(1993).Google Scholar
[3] Geoffroy, O., Givord, D., Otani, Y., Pannetier, B., Santos, A. D., Schlenker, M. and Souche, Y., J. Magn. Magn. Mater. 121 516 (1993).Google Scholar
[4] Otani, Y., Pannetier, B., Nozieres, J. P. and Givord, D., J. Magn. Magn. Mater. 126 622 (1993).Google Scholar
[5] Otani, Y., Nozaki, Y., Miyajima, H., Pannetier, B., Ghidini, M., Nozieres, J. P., Fillion, G. and Pugnat, P., Physica C 235–240 2945 (1993).Google Scholar
[6] Nozaki, Y., Otani, Y., Runge, K., Miyajima, H., Pannetier, B., Nozieres, J. P. and Fillion, G., J. Appl. Phys. 79 8571 (1996).Google Scholar
[7] Pannetier, B., in Quantum Coherence in Mesoscopic Systems, edited by Kramer, B., Nato ASI Ser. No. 254 (Plenum, New York, 1991), p. 452.Google Scholar
[8] Gunther, L. and Barbara, B., Phys. Rev. B49 3926 (1994).Google Scholar
[9] Giordano, N. and Monnier, J. D., Physica B194–196 1009 (1994);Google Scholar
Hong, K. and Giordano, N., Phys. Rev. B51 9855 (1995).Google Scholar
[10] Rzchowski, M. S., Benz, S. P., Tinkham, M. and Lobb, C. J., Phys. Rev. B42 2593 (1990).Google Scholar
[11] Pannetier, B., Rodts, S., Génicon, J. L., Nozieres, J. P. and Otani, Y., in Macroscopic Quantum Phenomena and Coherence in Superconducting Networks, p. 17 (Frascati, Italy 2–5 March, 1995).Google Scholar
[12] Ye, P. D., Weiss, D., von Krlitzing, K., Eberl, K. and Nickel, H., Appl. Phys. Lett. 67 1441 (1995);Google Scholar
Ye, P. D., Weiss, D., Gerhardts, R. R., von Krlitzing, K., Eberl, C., Nickel, H. and Foxon, C. T., Semicond. Sci. Technol. 10 715 (1995).Google Scholar
[13] Shearwood, C., Blundell, S. J., Baird, M. J., Bland, J. A. C., Gester, M., Armed, H. and Hughes, H. P., J. Appl. Phys. 75 5429 (1994).Google Scholar
[14] Tatara, G. and Fukuyama, H., Phys. Rev. Lett. (1997) to be published.Google Scholar