Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:31:48.793Z Has data issue: false hasContentIssue false

Lpcvd Polycrystalline Silicon Thin Films: The Evolution of Structure, Texture and Stress

Published online by Cambridge University Press:  25 February 2011

P. Krulevitch
Affiliation:
Berkeley Sensor & Actuator Center, Department of Mechanical Engineering,
Tai D. Nguyen
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley Laboratory, and Department of Materials Science and Mineral Engineering, Center for X-Ray Optics, Lawrence Berkeley Laboratory,
G. C. Johnson
Affiliation:
Berkeley Sensor & Actuator Center, Department of Mechanical Engineering,
R. T. Howe
Affiliation:
Berkeley Sensor & Actuator Center, Department of Electrical Engineering and Computer Science,
H. R. Wenk
Affiliation:
Department of Geology and Geophysics,
R. Gronsky
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley Laboratory, and Department of Materials Science and Mineral Engineering,
Get access

Abstract

An investigation of undoped LPCVD polycrystalline silicon films deposited at temperatures ranging from 605 to 700 C and silane pressures from 300 to 550 mTorr revealed large variations in stress with processing conditions and a correlation between stress and texture. TEM and HRTEM analysis show that morphology differences also exist. At lower temperatures (≈605 C) and higher pressures (≈400 mTorr), the films appear to deposit in an amorphous state and crystallize during the deposition to form microstructures characterized by equi-axed grains, tensile residual stress, and a texture with {110} and {11/} (/=2 or 3) components. Higher temperatures (between 620 and 650 C) produce films that nucleate at the Si02 interface, creating a {110} oriented columnar microstructure. At 700 C, the grains are still columnar, but the dominant texture is {100}. Films deposited at temperatures greater than 620 C exhibit compressive stress, and some contain regions of hexagonal silicon. This paper proposes possible causes of the varying stresses, textures, and microstructures in the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kamins, T.I., Polycrystalline Silicon For Integrated Circuit Applications, (Kluwer Academic Publishers, Boston, 1988).Google Scholar
2. Howe, R.T., J. Vacuum Sci. Tech. B. 6, 1809 (1988).Google Scholar
3. Harbeke, G., Krausbauer, L., Steigmeier, E.F., Widmer, A.E., Kappert, H.F., and Neugebaur, G., RCA Review, 44, 287 (1983).Google Scholar
4. Brokman, A., Gat, R., and Alpem, Y.. Appl. Phys. Lett., 49, 382 (1986).Google Scholar
5. Hendriks, M., Delhez, R.. de Keijser, Th.H., Radelaar, S., Habraken, F.H.P.M., Kuiper, A.E.T., and Boudewijn, P.R., J. Appl. Phys., 56, 2751 (1984).Google Scholar
6. Koleshko, V.M., Belitsky, V.F., and Kiryushin, I.V., Thin Solid Films, 162. 365 (1988).Google Scholar
7. Guckel, H., Bums, D.W., Visser, C.C.G., Tilmans, H.A.C., and Deroo, D., IEEE Trans. Electron Devices, ED–35, 800 (1988).Google Scholar
8. Adamczewska, J. and Budzynski, T., Thin Solid Films, 113, 271 (1984).Google Scholar
9. Huang, J., Krulevitch, P., Johnson, G.C., Howe, R.T., and Wenk, H.R., Mat. Res. Soc. Symp. Proc., 182, 201 (1990).Google Scholar
10. Nguyen, T.D., Gronsky, R., and Kortright, J.B., Cross-sectional Transmission Electron Microscopy of Multilayer Thin Film Structures (submitted to Journal of Electron Microscopy Techniques).Google Scholar
11. Wenk, H.R., Sintubin, M., Huang, J.. Johnson, G.C., and Howe, R.T., J. Appl. Phys., 67, 572 (1990).Google Scholar
12. Magarino, J., Kaplan, D., Bisaro, R., Morhange, J.F., and Zelma, K., J. de Physique, 43. cl-271 (1982).Google Scholar
13. Bloem, J.. and Beers, A.M., Thin Solid Films, 124, 93 (1985).Google Scholar
14. Kinsbron, E.. Sternheim, M., and Knoell, R., Appl. Phys. Lett., 42, 835 (1983).Google Scholar
15. Guckel, H., Bums, D.W., Rutigiliano, C.R., Showers, D.K., Uglow, J., Digest of Tech. Papers, Transducers 1987. 277, Tokyo, Japan (1987).Google Scholar
16. van der Drift, A., Philips Res. Repts, 22, 267 (1967).Google Scholar
17. Matson, E.A. and Polyakov, S.A., Phys. Stat. Sol. (a). 41, K93 (1977).Google Scholar
18. Joubert, P., Loisel, B., Chouan, Y., and Haji, L., J. Electrochem. Soc., 134, 2541 (1987).Google Scholar
19. Drosd, R. and Washburn, J.. J. Appl. Phys., 53. 397 (1982).Google Scholar
20. Beers, A.M. and Bloem, J., Appl Phys Lett, 41, 153 (1982).Google Scholar
21. Tsai, C.C., Thompson, R., Doland, C., Ponce, F.A., Anderson, G.B., and Wacker, B., Mat. Res. Soc. Symp. Proc., 118, 49 (1988).Google Scholar
22. Eremenko, V.G. and Nikitenko, V.I., Phys. Stat. Sol. (a), 14, 317 (1972).Google Scholar
23. Tan, Y.T. and , H. II, Phil. Mag. A, 44. 127 (1981).Google Scholar
24. Olijnyk, H.. Sikka, S.K., and Holzapfel, W.B., Phys. Let., 103A, 137 (1984).Google Scholar
25. Hendriks, M. and Radelaar, S., Thin Solid Films, 113, 59 (1984).Google Scholar
26. Pirouz, P., Chaim, R., Dahmen, U., and Westmacott, K.H., Acta Metall. Mater., 38. 313, (1990).Google Scholar
27. Howe, R.T. and Muller, R.S., J. Appl. Phys., 54, 4674 (1983).Google Scholar
28. Kamins, T.I., J. Electrochem. Soc., 121. 681 (1974).Google Scholar