Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T06:38:40.756Z Has data issue: false hasContentIssue false

Low Pressure CVD of GaN from GaCl3 and NH3

Published online by Cambridge University Press:  10 February 2011

M. Topf
Affiliation:
electronic mail: michael.k.topf@expl. physik.uni-giessen.de
S. Koynov
Affiliation:
Permanent address: CLSENES Bulgarian Academy of Science, 1784 Sofia, Bulgaria
S. Fischer
Affiliation:
Physics Institute, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
I. Dirnstorfer
Affiliation:
Physics Institute, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
W. Kriegseis
Affiliation:
Physics Institute, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
W. Burkhardt
Affiliation:
Physics Institute, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
B.K. Meyer
Affiliation:
Physics Institute, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
Get access

Abstract

We report on the heteroepitaxial growth of GaN from GaCl3 and NH3 on (0001) A12O3 and (0001) 6H-SiC substrates. In order to enable homogeneous growth within the entire deposition zone one has to use low process pressures in the 10-1 mbar range, where still a growth rate of ∼ 2 μm/h can be achieved. We present a simple model to describe our process and explain our observations. A comparison of GaN deposited on different substrates and with GaN buffer layers is given by low temperature Photoluminescence (PL). Furthermore, impurities are traced by secondary ion mass spectroscopy (SIMS).

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsiushita, T., Sugimoto, Y., and Kiyoku, H, Appl. Phys. Lett. 69, 4056 (1996).Google Scholar
[2] Götz, W., Johnson, N.M., Walker, J., Bour, D.P., and Street, R.A., Appl. Phys. Lett. 68, 667 (1996), and references therein.Google Scholar
[3] Fischer, S., Wetzel, C., Haller, E.E., and Meyer, B.K., Appl. Phys. Lett. 67, 1298 (1995).Google Scholar
[4] Leroux, M., Beaumont, B., Grandjean, N., Golivet, C., Gibart, P., Massies, J, Leymarie, J., Vasson, A., and Vasson, A.M., Proceedings of the EMRS Meeting, June 47, 1996, Strasbourg, France, to appear in Mat. Sci. Eng. B.Google Scholar
[5] Boguslawski, P., Briffs, E.L., and Bernholc, J., Appl. Phys. Lett. 69, 233 (1996).Google Scholar
[6] Maruska, H.P., Tietjen, J.J., Appl. Phys. Lett. 15, 327 (1969).Google Scholar
[7] Nickl, J.J., Just, W., and Beringer, R., Mat. Res. Bull. 9, 1413 (1974).Google Scholar
[8] Nickl, J.J., Just, W., and Beringer, R., Mat. Res. Bull. 10, 1097 (1975).Google Scholar
[9] Chetverikov, N.I., Chetverikova, I.F., Chernyaev, V.I., Novikov, V.B., and others, Inorganic Materials 11, 1792 (1975).Google Scholar
[10] Lappa, R., Glowacki, G., and Galkowski, S., Thin Solid Films 32, 73 (1976).Google Scholar
[11] Koynov, S., Topf, M., Fischer, S., Meyer, B.K., Radojkovic, P., Hartmann, E., and Liliental-Weber, Z., unpublished.Google Scholar
[12] Newman, N., Fu, T.C., Liu, X., Liliental-Weber, Z., Rubin, M., Chan, J.S., Jones, E., Ross, J.T., Tidswell, I., Yu, K.M., Cheung, N., and Weber, E.R., Mat. Res. Soc. Symp. Proc. 339, 483 (1994).Google Scholar
[13] Volm, D., Oettinger, K., Streibl, T., Kovalev, D., Ben-Chorin, M., Diener, J., Meyer, B.K., Majewski, J., Eckey, L., Hoffmann, A., Amano, H., Akasaki, I., Hiramatsu, K., Detchprohm, T., Phys. Rev. B 53, 16543 (1996).Google Scholar
[14] Grandjean, N., Massies, J., and Leroux, M., Appl. Phys. Lett. 69, 2071 (1996).Google Scholar
[15] Fischer, S., Wetzel, C., Hansen, W.L., Bourret-Courchesne, E.D., Meyer, B.K., and Haller, E.E., Appl. Phys. Lett. 69, 2716 (1996).Google Scholar