Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T09:25:11.707Z Has data issue: false hasContentIssue false

Light-Induced Degradation of Amorphous Silicon-Germanium Alloy Solar Cells Deposited at High Rates

Published online by Cambridge University Press:  10 February 2011

S. Sugiyama
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, Michigan 48084
X. Xu
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, Michigan 48084
J. Yang
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, Michigan 48084
S. Guha
Affiliation:
United Solar Systems Corp., 1100 West Maple Road, Troy, Michigan 48084
Get access

Abstract

We have studied the light-induced degradation of amorphous silicon-germanium (a-SiGe:H) alloy single-junction solar cells with high initial performance deposited at high rates. The intrinsic layers were deposited using microwave (MW) glow-discharge technique at deposition rates between 10 and 40 Å/s. The results show that light-induced degradation of the cells is higher than that of cells deposited at low rates using RF glow-discharge technique, and it does not strongly depend on deposition rates over this range. The total hydrogen content and the ratio of Si-H2, Ge-H, and Ge-H2 to Si-H bonding estimated by infrared (IR) absorption in films are correlated with the cell degradation results. We have also investigated the effect of ionbombardment on film properties. Films with low ion-bombardment are more porous and have higher composition of Si-H2 and Ge-H2 bonding. Appropriate ion-bombardment makes denser structure in a-SiGe:H alloy films deposited at high rates. This improves the cell performance as well.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hudgens, S. J., Johncock, A. G., and Ovshinsky, S. R., J. Non-Cryst. Solids 77–78, 809 (1985).Google Scholar
2. Saito, K., Sano, M., Ogawa, K., and Kajita, I., J. Non-Cryst. Solids 164–166, 689 (1993).Google Scholar
3. Watamabe, T., Azuma, K., Tanaka, M., Nakatani, M., Sonobe, T., and Shimada, T., Jpn. J. Appl. Phys. 27, 1126 (1988).Google Scholar
4. Shah, A., Dutta, J., Wyrsch, N., Prasad, K., Curtins, H., Finger, F., Howling, A., and Hollenstein, C., Mat. Res. Soc. Symp. Proc. 258, 15 (1992).Google Scholar
5. Guha, S., Xu, X., Yang, J., and Banerjee, A., Appl. Phys. Lett. 66, 595 (1995).Google Scholar
6. Guha, S., Yang, J., Jones, S., Chen, Y., and Williamson, D., Appl. Phys. Lett. 61, 1444 (1992).Google Scholar
7. Xu, X., Yang, J., and Guha, S., Mat. Res. Soc. Symp. Proc. 297, 649 (1993).Google Scholar
8. Tanaka, K. and Matsuda, A., Materials Sc. Rep. 2, 139 (1987).Google Scholar
9. Yang, J., Glatfelter, T., Ross, R., Mohr, R., Fournier, J. P., and Guha, S., J. Non-Cryst. Solids 97–98, 1303 (1987).Google Scholar
10. Cabarrocas, P. Roca i, Morin, P., Chu, V., Conde, J. P., Liu, J. Z., Rark, H. R., and Wagner, S., J. Appl. Phys. 69, 2942 (1991).Google Scholar
11. Guha, S., Xu, X., Yang, J., and Banerjee, A., Mat. Res. Soc. Symp. Proc. 377, 621 (1995).Google Scholar
12. Tsu, D. V., Lucovsky, G., and Davidson, B. N., Phys. Rev. B 40, 1795 (1989).Google Scholar
13. Williamson, D. (private communication).Google Scholar
14. Beyer, W. and Wagner, H., J. Non-Cryst. Solids 59–60, 161 (1983).Google Scholar
15. Yang, J., Xu, X., Banerjee, A., and Guha, S., Proc. 25th IEEE, 1996 (to be published).Google Scholar
16. Yang, J. and Guha, S., Appl. Phys. Lett. 61, 2917 (1992).Google Scholar