Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T07:14:20.007Z Has data issue: false hasContentIssue false

Interplay between Anion Rotation and Cation Transport in the Plastic High-Temperature Phase of Sodium Ortho-Phosphate

Published online by Cambridge University Press:  10 February 2011

K. Funke
Affiliation:
Münster University, Institute of Physical Chemistry, Muinster, Germany
D. Wilmer
Affiliation:
Münster University, Institute of Physical Chemistry, Muinster, Germany
R. D. Banhatti
Affiliation:
Münster University, Institute of Physical Chemistry, Muinster, Germany
M. Witschas
Affiliation:
Münster University, Institute of Physical Chemistry, Muinster, Germany
R. E. Lechner
Affiliation:
Hahn-Meitner Institute, Berlin, Germany
J. Fitter
Affiliation:
Hahn-Meitner Institute, Berlin, Germany
M. Jansen
Affiliation:
Bonn University, Institute of Inorganic Chemistry, Bonn, Germany
G. Korus
Affiliation:
Bonn University, Institute of Inorganic Chemistry, Bonn, Germany
Get access

Abstract

The high-temperature phase of sodium ortho-phosphate, α-Na3PO4, belongs to the class of ion conducting plastic crystals, i.e., it is characterized by a dynamic rotational disorder of its poly-atomic anions and, at the same time, by a considerable translational mobility of its cations. During the past decade, the possibility, nature, and importance of a dynamic interplay between the two kinds of motion have been a subject of continued controversy. Proponents of a strong interplay coined the expression “paddle-wheel mechanism”. In our present contribution we report, for the first time, on the results of dynamic experiments probing the elementary steps of anionic and cationic motion individually. The techniques utilized in this study are coherent quasielastic neutron scattering and high-frequency conductivity spectroscopy, respectively. The data are complemented by an ab-initio molecular-dynamics simulation. Our results provide a view of the movement of anions and cations and of correlations between them. Strong dynamic coupling is detected between the octahedrally coordinated sodium ions and nearby oxygen ions. For translational sodium-ion transport, a chain mechanism appears to be operative.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kvist, A. and Bengtzelius, A., in Fast Ion Transport in Solids, edited by Gool, W. van, page 193, Amsterdam, 1973, North-Holland.Google Scholar
2. Lundén, A., Solid State Ionics 28–30 163 (1988).Google Scholar
3. Lundén, A., Solid State Comm. 65 1237 (1988).Google Scholar
4. Lundén, A. and Dissanayake, M., J. Solid State Chem. 90 179 (1991).Google Scholar
5. Lundén, A., J. Solid State Chem. 107 296 (1993).Google Scholar
6. Lundén, A., Solid State Ionics 68 77 (1994).Google Scholar
7. Secco, E., Solid State Ionics 28–30 168 (1988).Google Scholar
8. Secco, E., Solid State Comm. 66 921 (1988).Google Scholar
9. Secco, E., Solid State Ionics 45 335 (1991).Google Scholar
10. Secco, E., J. Solid State Chem. 96 366 (1992).Google Scholar
11. Secco, E., Solid State Ionics 60 233 (1993).Google Scholar
12. Wiench, D. M. and Jansen, M., Z. anorg. allg. Chem. 461 101 (1980).Google Scholar
13. Jansen, M., Angew. Chem. 103 1574 (1991).Google Scholar
14. Hruschka, H., Lissel, E., and Jansen, M., Solid State Ionics 28–30 159 (1988).Google Scholar
15. Lechner, R. E., Melzer, R., and Fitter, J., Physica B 226 86 (1996).Google Scholar
16. Funke, K., Hermeling, J., and Kumpers, J., Z. Naturforsch. 43a, 1094 (1988).Google Scholar
17. Funke, K. et al., Ber. Bunsenges. Phys. Chem. 93 1330 (1989).Google Scholar
18. Hoppe, R., Kloidt, T., and Funke, K., Ber. Bunsenges. Phys. Chem. 95 1025 (1991).Google Scholar
19. Leadbetter, A. J. and Lechner, R. E., Neutron scattering studies, in The Plastically Crystalline State, edited by Sherwood, J. N., pages 285320, Wiley, Chichester, 1979.Google Scholar
20. Bée, M., Quasielastic Neutron Scattering, Adam Hilger, Bristol, 1988.Google Scholar
21. Price, D. and Saboungi, M.-L., Phys. Rev. B 44 7289 (1991).Google Scholar
22. Neumann, D. A. et al., Phys. Rev. Lett 67 3808 (1991).Google Scholar
23. Sears, V. F, Can. J. Phys. 45 237 (1967).Google Scholar
24. Michel, K. H., J. Chem. Phys. 58 1143 (1973).Google Scholar
25. Livingston, R. C., Rowe, J. M., and Rush, J. J., J. Chem. Phys. 60 4541 (1974).Google Scholar
26. Töpler, J., Richter, D. R., and Springer, T., J. Chem. Phys. 69 3170 (1978).Google Scholar
27. Barnes, J. D., J. Chem. Phys. 58 5193 (1973).Google Scholar
28. Dianoux, A. J., Volino, F., and Hervet, H., Mol. Phys. 30 1181 (1975).Google Scholar
29. Klein, M. L., McDonald, I. R., and Ozaki, Y., J. Chem. Phys. 79 5579 (1983).Google Scholar
30. Strom, U. and Taylor, P C., Phys. Rev. B 16 5512 (1977).Google Scholar
31. Funke, K., Roling, B., and Lange, M., Solid State Ionics 105 195 (1998).Google Scholar
32. Jonscher, A. K., Nature 267 673 (1977).Google Scholar
33. Almond, D. P., Duncan, G. K., and West, A. R., Solid State Ionics 8 159 (1983).Google Scholar
34. Funke, K., Prog. Solid St. Chem. 22 111 (1993).Google Scholar
35. Wilmer, D., Funke, K., Lauxtermann, T., and Bennington, S. M., Mat. Res. Soc. Symp. Proc. 411 157 (1996).Google Scholar
36. Kubo, R., J. Phys. Soc. Japan 12 570 (1957).Google Scholar