Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:39:57.322Z Has data issue: false hasContentIssue false

Interaction and Energy Level Alignment at Interfaces between Pentacene and Low Work Function Metals

Published online by Cambridge University Press:  15 March 2011

N. Koch
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A.
J. Ghijsen
Affiliation:
Laboratoire Interdisciplinaire de Spectroscopie Electronique, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
R. Ruiz
Affiliation:
Vanderbilt University, Department of Physics and Astronomy Nashville, TN 37235, U.S.A.
J. Pflaum
Affiliation:
3. Physikalisches Institut, Universitaet Stuttgart, D-70569 Stuttgart, Germany
R. L. Johnson
Affiliation:
II. Institut für Experimentalphysik, Universität Hamburg, D-22761 Hamburg, Germany
J.-J. Pireaux
Affiliation:
Laboratoire Interdisciplinaire de Spectroscopie Electronique, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
J. Schwartz
Affiliation:
Department of Chemistry, Princeton University, Princeton, NJ 08544, U.S.A.
A. Kahn
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A.
Get access

Abstract

A number of low workfunction metals (samarium, alkali metals) were deposited onto vacuum sublimed thin films of pentacene. The change in the valence electronic structure of the organic material was studied by in situ ultraviolet photoemission spectroscopy (UPS). Alkali metal intercalation leads to the appearance of a new photoemission feature within the pentacene energy gap, due to a charge transfer from the alkali atoms to the lowest unoccupied molecular orbital (LUMO) of the organic material. The energy spacing between this emission feature and the relaxed highest occupied molecular orbital (HOMO) of the pristine molecule is 1 eV. From X-ray photoemission spectroscopy core level analysis, we estimate a concentration ratio of two alkali metal atoms per pentacene molecule at maximum intercalation level, leading to a complete filling of the LUMO. This is consistent with the results from UPS that the new emission is always observed below the Fermi-level. Samarium is found to exhibit a more subtle interaction with pentacene: the molecular orbitals remain almost unperturbed upon Sm deposition. The resulting energy level alignment at this interface seems to be very favorable for the injection of electrons from Sm into pentacene, as the HOMO-onset is found at 1.8 eV below the metal Fermi edge. This value is close to the 2.2 eV HOMO-LUMO gap of pentacene measured by UPS and inverse photoemission spectroscopy, thus corresponding to a small electron injection barrier.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, C. W. and Slyke, S. A. v., Appl. Phys. Lett. 51, 913 (1987).Google Scholar
2. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackey, K., Friend, R. H., Burns, P. L., and Holmes, A. B., Nature 347, 539 (1990).Google Scholar
3. Bulovic, V., Gu, G., Burrows, P. E., Forrest, S. R., and Thompson, M. E., Nature 380, 29 (1996).Google Scholar
4. Schön, J. H., Dodabalapur, A., Kloc, C., and Batlogg, B., Science 290, 963 (2000).Google Scholar
5. Dimitrakopoulos, C. D., Brown, A. R., and Pomp, A., J. Appl. Phys. 80, 2501 (1996).Google Scholar
6. Schön, J. H., Berg, S., Kloc, C., and Batlogg, B., Science 287, 1022 (2000).Google Scholar
7.Y Harada, Ozaki, H., Ohno, K., Phys. Rev. Lett 52, 2269 (1984).Google Scholar
8. Ramsey, M. G., Steinmuller, D., and Netzer, F. P., Phys. Rev. B 42, 5902 (1990).Google Scholar
9. Fahlman, M., Beljonne, D., Logdlund, M., Friend, R. H., Holmes, A. B., Bredas, J. L., and Salaneck, W. R., Chem. Phys. Lett. 214, 327 (1993).Google Scholar
10. Greczynski, G., Fahlman, M., and Salaneck, W. R., J. Chem. Phys. 113, 2407 (2000).Google Scholar
11. Shen, C., Kahn, A., and Schwartz, J., J. Appl. Phys. 89, 449 (2001).Google Scholar
12. Parthasarathy, G., Shen, C., Kahn, A., and Forrest, S. R., J. Appl. Phys. 89, 4986 (2001).Google Scholar
13. Johnson, R. L. and Reichardt, J., Nucl. Instr. Methods 208, 719 (1983).Google Scholar
14. Silinsh, E. A., Organic Molecular Crystals (Springer, Berlin, 1980).Google Scholar
15. Koch, N., Leising, G., Yu, L. M., Rajagopal, A., Pireaux, J. J., and Johnson, R. L., J. Vac. Sci. Technol. 18, 295 (2000).Google Scholar
16. Salaneck, W. R. and Brédas, J.-L., Adv. Mater. 8, 48 (1996).Google Scholar
17. Koch, N., Rajagopal, A., Ghijsen, J., Johnson, R. L., Leising, G., and Pireaux, J. J., J. Phys. Chem. B 104, 1434 (2000).Google Scholar
18. Iucci, G., Xing, K., Lögdlund, M., Fahlman, M., and Salaneck, W. R., Chem. Phys. Lett. 244, 139 (1995).Google Scholar
19. Koch, N., Zojer, E., Rajagopal, A., Ghijsen, J., Johnson, R. L., Leising, G., and Pireaux, J. J., Adv. Funct. Mater. 11, 51 (2001).Google Scholar
20. Ozaki, H., J. Chem. Phys. 113, 6361 (2000).Google Scholar
21. Dannetun, P., Lögdlund, M., Fredriksson, C., Lazzaroni, R., Fauquet, C., Stafström, S., Spangler, C. W., Brédas, J. L., Salaneck, W. R., J. Chem. Phys. 100, 6765 (1994).Google Scholar
22. Salaneck, W. R., Stafström, S., and Brédas, J.-L., Conjugated polymer surfaces and interfaces; electronic and chemical structure of interfaces for polymer light emitting devices (Cambridge Univ. Press, Cambridge, 1996).Google Scholar
23. Campbell, R. B., Trotter, J., and Robertson, J. M., Acta Crystallographica 14, 705 (1961).Google Scholar
24. Schuerlein, T. J., Schmidt, A., Lee, P. A., Nebesny, K. W., and Armstrong, N. R., Jpn. J. Appl. Phys. Part 1 34, 3837 (1995).Google Scholar
25. Oji, H., Ito, E., Furuta, M., Kajikawa, K., Ishii, H., Ouchi, Y., and Seki, K., J. Electron Spectrosc. Relat. Phenom. 101–103, 517 (1999).Google Scholar
26. Onoda, M., Tada, K., and Nakayama, H., J. Appl. Phys. 86, 2110 (1999).Google Scholar