Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T11:00:49.187Z Has data issue: false hasContentIssue false

Integrative Chemistry-Based Generation of Novel Three Dimensional Macrocellular Carbonaceous Biofuel Cell

Published online by Cambridge University Press:  18 March 2014

Victoria Flexer
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Nicolas Brun
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Mathieu Destribats
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Rénal Backov
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Nicolas Mano
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Get access

Abstract

Here we report the first membrane-less biofuel cell made by using three-dimensional carbonaceous foam electrodes. We first developed a new synthetic pathway to produce a new carbonaceous foam electrode material with increased porosity both in the meso and macroporous scale. We proved that by increasing the porosity of our three-dimensional foams we could increase the current density of our modified electrodes. Then, by choosing the right combination of enzyme and mediator, and the right loading of active components, we achieved unprecedentedly high current densities for an anodic system. Finally, we combined the improved cathode and anode to build a new membrane-less hybrid enzymatic biofuel cell consisting of a mediated anode and a mediator-less cathode.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barton, S. C., Gallaway, J., Atanassov, P., Chem. Rev. 104, 4867 (2004).CrossRefGoogle Scholar
Leech, D., Kavanagh, P. and Schuhmann, W., Electrochimica Acta 84, 223, (2012).CrossRefGoogle Scholar
Flexer, V., Brun, N., Backov, R., Mano, N., Energy. Env.Sci. 3, 1302 (2010).CrossRefGoogle Scholar
Flexer, V., Brun, N., Courjean, O., Backov, R. and Mano, N., Energy. Env.Sci. 4, 2097 (2011).CrossRefGoogle Scholar
Minteer, S. D., Liaw, B. Y. and Cooney, M. J., Cur. Opinion in Biotechnology, 18, 228 (2007).CrossRefGoogle Scholar
Carn, F., Colin, A., Achard, M. F., Deleuze, H., Sellier, E., Birot, M., Backov, R., J. Mat. Chem. 14, 1370 (2004).CrossRefGoogle Scholar
Brun, N., Prabaharan, S. R. S., Morcrette, M., Sanchez, C., Pécastaings, G., Derré, A., Soum, A., Deleuze, H., Birot, M., Backov, R., Adv. Func. Mat. 19, 3136 (2009).CrossRefGoogle Scholar
Destribats, M., Faure, B., Birot, M., Babot, O., Schmitt, V. and Backov, R., Adv. Func. Mat. 22, 2642 (2012).CrossRefGoogle Scholar
Lau, C., Martin, G., Minteer, S. D., Cooney, M. J., Electroanalysis 22, 793 (2010).CrossRefGoogle Scholar
Deng, L., Wang, F., Chen, H., Shang, L., Wang, L., Wang, T., Dong, S., Biosensors and Bioelectronics 24, 329 (2008).CrossRefGoogle Scholar
Zebda, A., Gondran, C., Le Goff, A., Holzinger, M., Cinquin, P., Cosnier, S., Nat.Commun. 2 (2011).CrossRefGoogle Scholar
Gao, F., Viry, L., Maugey, M., Poulin, P., Mano, N., Nat. Commun. 1 (2010).Google Scholar
Backov, R., Soft Matter 2, 452 (2006).CrossRefGoogle Scholar