Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:51:30.939Z Has data issue: false hasContentIssue false

Influence of CH4/H2 Reactive Ion Etching on Deep Levels in Si-Doped AlxGa1−xAs (x=0.25)

Published online by Cambridge University Press:  22 February 2011

R. Pereira
Affiliation:
CPqD-Telebras, Optoelectronic Division, PO Box 1579, 13085, Campinas, Brasil
M. Van Hove
Affiliation:
IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium
M. de Potter
Affiliation:
IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium
K. Van Rossum
Affiliation:
IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium
Get access

Extract

The effect of CH4/H2 reactive ion etching (RIE) on Si-doped AlxGa1−xAs (x=0.25) is studied by deep level transient spectroscopy (DLTS) and Hall measurements. After RIE exposure, the samples were annealed between 250 and 500°C in order to study the recovery kinetics of deep and shallow levels. Non-etched reference samples showed broad DLTS spectra which were deconvoluted in two different emission peaks. We assigned them to DX1 and DX2 centers. The different deep levels are characierized by different aluminium configurations, one or two aluminium atoms, surrounding the silicon donor which are responsible for the DX centers. After RIE exposure and subsequent thermal annealing, a third emission peak is observed. This emission is attributed to the DX3 center, which is characterized by three aluminium atoms neighbouring the silicon donor. The recovery activation energy is calculated based on first-order kinetics. The activation energies are found to be around 1.9 eV in all cases.

Complementary Hall measurements as a function of temperature (4-300 K) were used to characterize the electron capture of deep levels in Si-doped AlGaAs exposed to CH4/H2 RIE. We observed that the samples exposed to RIE and annealed at temperatures higher than 400°C exhibit electron capture in the 120-150 K temperature range. On the other hand, samples annealed at lower temperatures, showed additional capture features between 200 and 230 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 - Jalil, A., Chevallier, J., Azoulay, R. and Mircea, A., J. Appl. Phys., 59(11), 3774 (1986).Google Scholar
2 - Mostefaoui, R., Chevallier, J., Jalil, A., Pesant, J. C., Tu, C. W. and Kopf, R. F., J. Appl. Phys., 64(1), 207 (1988).Google Scholar
3 - Dautremont-Smith, W. C., 1988 Mat. Res. Soc. Symp. Proc., vol. 104, 313 (1988).Google Scholar
4 - Jalil, A., Heurtel, A., Marfaing, Y. and Chevallier, J., J. Appl. Phys., 66(12), 5854 (1989).Google Scholar
5 - Nabity, J. C., Stavola, M., Lopata, J., Dautremont-Smith, W. C., Tu, C. W. and Pearton, S. J., Appl. Phys. Lett., 50(14), 921 (1987).Google Scholar
6 - Morrow, R. A., J. Appl. Phys., 69(8), 4306 (1991).Google Scholar
7 - Chadi, D. J. and Chang, K. J., Phys. Rev. Lett., 61(7), 873 (1988).Google Scholar
8 - Mooney, P. M., J. Appl. Phys., 67(3), R1 (1990).Google Scholar
9 - Chang, K. J., Proc. 20th Conf. Phys. Semicond., Ed. Anastassakis, E. M. and Joannopoulos, J. D., 1, 787 (1990).Google Scholar
10 - Cheung, R., Thoms, S, McIntyre, I., Wilkinson, C. D. W. and Beaumont, S. P., J. Vac. Sci. Technol., B 6(6), 1911 (1988).Google Scholar
11 - Collot, P., Gaonach, C. and Proust, N., Mat. Res. Soc. Symp. Proc., vol.144, 507 (1989).Google Scholar
12 - Pearton, S. J. and Albernathy, C. R., Appl. Phys. Lett., 55(7), 678 (1989).Google Scholar
13 - Pereira, R., Hove, M. Van, Raedt, W. De, Jansen, Ph., Borghs, G. and Rossum, M. Van, J. Vac. Sci. Technol., B 9(4), 1978 (1991).Google Scholar
14 - Morgan, T. N., J. Electron. Mat., 20(1), 63 (1991).Google Scholar
15 - Mooney, P. M., Theis, T. N. and Calleja, E., J. Electron. Mat., 20(1), 23 (1991).Google Scholar
16 - Piotrzkowski, R., Litwin-Staszewska, E., Robert, J. L., Mosser, V. and Lorenzini, D. P., Semicond. Sci. Technol., 6, 500 (1991).Google Scholar