Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:16:57.255Z Has data issue: false hasContentIssue false

Immunoreactivity and Characterization of Histidine-Rich Peptide Encapsulated Nanoclusters

Published online by Cambridge University Press:  17 March 2011

Joseph M. Slocik
Affiliation:
Department of Chemistry, VU Station B 351822, Vanderbilt University, Nashville, TN 37235-1822
Joshua T. Moore
Affiliation:
Department of Chemistry, VU Station B 351822, Vanderbilt University, Nashville, TN 37235-1822
David W. Wright*
Affiliation:
Department of Chemistry, VU Station B 351822, Vanderbilt University, Nashville, TN 37235-1822
*
Corresponding Author. Tel.: 1-615-322-2636. Fax: 1-615-343-1234 E-mail: [email protected]
Get access

Abstract

Histidine-rich proteins (HRP), which function in the biological control of inorganic materials, have been identified in the liver fluke Fasciola hepatica, marine polychaetes, humans, and the malarial parasite Plasmodium falciparum. For example, the malarial parasite contains HRP II composed of repeating peptide sequences of Ala-His-His-Ala-His-His-AlaAla-Asp. This peptide was screened as a stabilizing peptide coat for a variety of nanoclusters of Ag0, Au0, ZnS, TiO2, and Ag2S, and characterized by UV-Vis spectroscopy, fluorescence, IR, XRD, and TEM. The resulting nanoclusters were examined for immunoreactivity against a commercial monoclonal antibody for HRP II of P. falciparum.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kho, R., Torres-Martinez, C.L., and Mehra, R.K., J. Colloid and Interface Sci. 227, 561566 (2000).Google Scholar
2. Kho, R., Nguyen, L., Torres-Martinez, C.L., and Mehra, R.K., Biochem. And Biophys. Res. Comm. 272, 2935 (2000).Google Scholar
3. Storhoff, J.J. and Mirkin, C.A., Chem. Rev. 99, 18491862 (1999) and references therein.Google Scholar
4. Heuer, A.H., Fink, D.J., Laraia, V.J., Arias, J.L., Calvert, P.D., Kendall, K., Messing, G.L., Blackwell, J., Reike, P.C., Thompson, D.H., Wheeler, A.P., Veis, A., Caplan, A.I., Science 255, 10981105 (1992).Google Scholar
5. Kirschvink, J.L., Jones, D.S., and Macfadden, J.B., (Eds.) Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnetism. (Plenum, New York, 1985).Google Scholar
6. Brewer, D. and Lajoie, G., Rapid. Commun. Mass Spec. 14, 17361745 (2000).Google Scholar
7. Wellems, T.E. and Howard, R.J., Proc. Natl. Acad. Sci., U.S.A. 83, 60656069 (1986).Google Scholar
8. Morgan, W.T., Biochemistry 24, 14961501 (1985).Google Scholar
9. Waite, J. H., Rice-Ficht, A.C., Biochemistry 28, 61046110 (1989).Google Scholar
10. Voss-Foucart, M.F., Fonze-Vignaux, M.T., and Jeuniaux, C., Biochem. Syst. 1, 119122 (1973).Google Scholar
11. Sullivan, D. J. Jr, Gluzman, I.Y., Goldberg, D.E., Science 271, 219222 (1996).Google Scholar
12. Bryan, G.W., and Gibbs, P.E., J. Mar. Biol. Assoc. U.K. 59, 969973 (1979).Google Scholar
13. Wilcoxon, J.P., Martin, J.E., and Provencio, P., J. Chem. Phys. 115, 9981008 (2001).Google Scholar
14. Brelle, M.C., Zhang, J.Z., Nguyen, L., and Mehra, R.K., J. Phys. Chem. A 103, 1019410201 (1999).Google Scholar
15. Wilcoxon, J.P., and Martin, J.E., J. Chem. Phys. 108 (21), 91379143 (1998).Google Scholar
16. Dameron, C.T., and Dance, I.G., In Biomimetic Materials Chemistry, Mann, S., Ed. (VCH Publishers, New York, 1996) p. 6991.Google Scholar
17. Spreitzer, G., Whitling, J.M., Madura, J.D., Wright, D.W., J. Chem. Soc., Chem. Commun. 209–210 (2000).Google Scholar
18.Crystallographic data from WWW-MINICRYST, an information calculating system on crystal structure data for minerals supported by the Russian Foundation of Basic Research (grants 96-07-89162, 96-07-89323, 01-07-90052).Google Scholar